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Abstract 

The key point for volatility forecast is to utilize appropriate innovation conditional density. 

The specification of flexible innovation density is very essential given that it directly 

affects the accuracy of volatility prediction. In this work, a new odd exponentiated  

skew-t (OEST) innovation density is introduced for exponentiated generalized 

autoregressive conditional heteroscedasticity (EGARCH) models for modeling the daily 

volatility of financial return series. The simulation via Monte Carlo experiment indicates 

that the estimators compared are asymptotically unbiased and consistent given that their 

biases converge to zero as the sample size increases. The maximum likelihood and 

maximum product of spacing procedures dominate the other procedures. The real dataset 

application based on the First Bank Nigeria shock price index is given to show the 

performance of the EGARCH model specified under OEST innovation density relative to 

normal, student-t, generalized error, skew-normal, skew student-t, skew generalized error, 

generalized hyperbolic and Johnson reparametrized densities in terms of volatility 

accuracy. Overall, the empirical results show that the EGARCH model with OEST 

innovation density generates better in-and out-of-sample performance than all the other 

models. 

Keywords: EGARCH Model, Estimation Methods, Financial Returns, Innovations 

Density, Monte-Carlo Simulation. 

JEL Classification: C13, C15, C40, C46, G17. 
 

1. Introduction 

Asset-holding financial institutions, stock firms and investment portfolio 

managers’ significant wellsprings of vulnerability are risk. In particular, financial 

risk refers to the possibility of an investment asset value declining due to market 

factors vacillations. However, the influence of bad news such as political turmoil, 

wars, or economic crises leads to greater fluctuations in financial asset prices. All 

mailto:adubisiobinna@fuwukari.edu.ng
https://orcid.org/0000-0001-8575-2751
https://orcid.org/0000-0003-1142-9542


 
 
 

 
 Adubisi et al. 

                                                                 

 
 

1177 

these led to the development of generalized autoregressive conditional 

heteroscedasticity (GARCH) models for evaluating the risk exposure of financial 

institutions.  Recent studies on estimating volatility focus on modeling financial 

asset returns using the GARCH models with existing conditional distributions, 

namely the normal, skew-normal, Student-t, generalized error distribution and their 

skew versions (Yelamanchili, 2020; Samson et al., 2020a; 2020b). In any case, the 

previously mentioned broadly utilized conditional innovation distributions have 

their curious issues and the most remarkable downside is the lack of stability under 

aggregation, which is of specific significance in financial risk management 

(Calzolari et al., 2014). More so, the tail strength of the GARCH models remains 

too short even with the existing conditional distributions which makes it difficult 

to capture properly the stylized features in financial asset returns (Feng and Shi, 

2017). The distributional assumption on the innovation of the GARCH models 

directly impacts volatility estimates and forecasts. This causes an issue of 

underestimation and overestimation of true volatility and value at risk (VaR) 

estimates (Altun et al., 2018; Adubisi and Abdulkadir et al., 2022).  

The GARCH models assume that the parameter estimates are non-negative 

given that it pays more attention to the magnitude of the financial asset returns 

while disregarding the leverage effect feature in the financial asset returns. 

Nevertheless, the non-negativity assumption of the model parameters can be 

violated (Tsay, 2010). To overcome a few shortcomings of the GARCH models, 

the exponential GARCH (EGARCH) model was proposed to allow for asymmetric 

effects (Nelson, 1991; Tsay, 2010). A few researchers have studied the 

performance of the EGARCH models about accurate volatility predictions with 

skewed and heavy-tailed innovation densities, such as generalized error, beta 

Student’s-t, beta skew Student’s-t, Student’s-t, and exponentiated generalized 

Student’s-t distribution (Harvey and Chakravarty, 2008; Harvey, 2013; Harvey and 

Sucarrat, 2013, Agboola et al., 2019; Adubisi and Abdulkadir et al., 2022; Adubisi, 

Abdulkadir et al., 2022). Chen et al. (2019) proposed the Symmetric Curve (BSC) 

and Asymmetric Curve Index (ACI) as tools for asymmetric GARCH volatility 

models in exploring the asymmetric features and depicting time-varying volatility 

of wind power time series. They concluded that models considering the 

asymmetric effect of volatility produced good wind power prediction performance. 

Mohammed et al. (2020) proposed a nonlinear semiparametric fuzzy-EGARCH-

ANN model to solve the issue of modeling and prediction of stock market volatility 

by combining the FIS, ANN, and EGARCH models. The new model was able to 

capture volatility clustering and leverage the effect of extremely nonlinear and 

complex financial time series datasets. Adubisi, Abdulkadir et al. (2022) proposed 

the use of generalized odd generalized exponentiated skew-t density that is heavy-
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tail and able to capture extreme events than existing innovation densities in some 

GARCH-type models. Altun et al. (2018; 2019), and Adubisi and Abdulkadir et al. 

(2022) emphasized that heavy-tailed innovation distributions produce accurate 

daily volatility and VaR predictions. However, the introduction of new flexible 

innovation distributions is still vital in increasing the accuracy of the monetary risk 

estimations. 

Additionally, the new direction in distribution theory is the comparison of 

estimation procedures in estimating the parameters of proposed distributions (see, 

Chesneau et al., 2020; Ramos et al., 2020; Aldahlan and Afify, 2020; Adubisi and 

Abdulkadir et al., 2022; Adubisi and Abdulkadir et al., 2022). Motivated by these, 

the performance of non-Bayesian estimators such as the least squares (LS), 

maximum likelihood (ML), Weighted least squares (WLS), maximum product 

spacing (MPS), Cramer-von Mises (CVM), and Anderson-Darling (ANDA) using 

Monte Carlo experiment is carried-out for the odd exponentiated skew-t (OEST) 

distribution. This means, creating a standard guideline for choosing the best 

estimator for the OEST distribution which is thought to be of interest to applied-

statisticians. Furthermore, the performance evaluation of the GARCH-type model 

in predicting accurate volatility with well-known heavy-tailed densities can be 

found in some research works. However, there is still no better flexible leptokurtic 

and skewed conditional density to quantify financial risks. Thus, our curiosity is 

stimulated to create an apt flexible innovation conditional density when the 

underlying conditional density is heavy-tailed but unknown for the EGARCH 

volatility model. The motivation of this work is to propose a new EGARCH model 

with new heavy-tailed and skewed density to produce more accurate volatility 

prediction than other well-known EGARCH models. Herewith, a new odd 

exponentiated skew-t (OEST) innovation density is introduced and offers more 

flexibility for accurate volatility prediction. Likewise, a new dynamic EGARCH-

OEST model is introduced for predicting daily volatility based on the EGARCH 

volatility model with OEST innovation density. 

The rest of the paper is organized as follows. Section 2, the density, 

distribution, hazard, and quantile functions of the OEST distribution are presented. 

In section 3, the six frequentist estimation methods for estimating the OEST model 

parameters are presented. Section 4, Monte Carlo experiments using the six 

estimation methods for the OEST model are presented. In Section 5, the EGARCH 

model is presented with well-known innovation densities while the model selection 

criteria and prediction performance measures are presented in Section 6. In Section 

7, the empirical findings are presented and conclusions are provided in Section 8. 
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2. The Extended Skew-t Model 

The two-parameter model titled the odd exponential skew-t (OEST) model 

appropriate for modeling right-skewed, left-skewed, and heavy-tailed datasets 

introduced by Adubisi et al. (2021) is utilized. The cumulative distribution function 

(cdf) and probability density function (pdf) are given by: 
 

 

;

;
( ; , ) 1

  
  
  

H y

H y
F y e





  ,                              (1) 
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 

 
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H y
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The hazard rate function (hrf) of the OEST model is given as 

 
   

3 2 222 ;


   

h y
y H y



 
,                   (3) 

where 2( ) 1 2 2  H y y y ,  
3 2

2( ) 2 h y y  ,    1 H y H y , 0  is the 

shape parameter,   controls the skewness and y .  

Figure 1 depicts that the density function of the OEST model can be unimodal, 

symmetric, right and left skewed for several parameter values. This shows that the 

model could be a better candidate for capturing the financial returns stylized 

features such as leptokurtic, skewness, and fat-tail thereby increasing the accuracy 

of volatility predictions.  

 
Figure 1. Plots of the OEST Density Function for Selected Parameter Values 

Source: Research finding. 

 

2.1 Quantile Function 

The quantile function,   1( )Q u F u  is derived by inverting Equation (1). The 

quantile function of the OEST model is derived as: 

 
 

  
 

1
2

1
2 2

2 1
, 0,1 .

1 2 1

   
 

    

u

u

Q u u            (4) 
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where 
 

  
log 1

log 1

 
 

 
u

u

u
.  

Using the quantile function in Equation (4), various quantile measures such as 

Bowley’s skewness and Moor’s kurtosis can be estimated. Figure 2 depicts the 3D 

plots of the skewness and kurtosis of the OEST model for some parameter values 

and evidently, the OEST model can be used in modeling various datasets with 

skewed and leptokurtic features. The quantile function in Equation (4) will be used 

in the Monte Carlo Experiments. 

 
Figure 2. Bowley’s Skewness and Moor’s Kurtosis Plots of the OEST Distribution 

Source: Research finding. 

 

2.2 Standardized Extended Skew-t Model 

The standardized OEST model is obtained via the transformation 2z h   where 

( ) 0 z  and var( ) 1z . The random variable z  can be expressed as 

2 2z y h h    and 21z h   . Hence, the standardized OEST density 

function takes the form 

 
 

 
 2 2

3
2 2

( ) 1 exp 1
12 t

f z h

z

 




 
   

    

           (5)  

where 2 and h  denotes the mean and standard deviation and 
2

1

2 2

t

t

z

z




 
  
  

. 

The standardized extended skew-t model will be used as the new conditional 

innovation in the EGARCH volatility model. 

 

2.3 Location-Scale Form of Extended Skew-T Model 

The density function of the OEST model with location parameter   and scale 

parameter   given that Y X    takes the form: 
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2
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      (6) 

where 
x 



 
   

 
,  and 0   . The density function Equation (6) is denoted as 

 ; , , ,STX OE x     . This is the location-scale form of the density function given 

in Equation (2) which is very important in reliability analysis.  

 

3. Estimation Procedures  

This section discourses six estimation procedures such as the method of maximum 

likelihood (ML), the method of maximum product of spacing (MPS), the method 

of ordinary least squares (OLS), the method of weighted least squares (WLS), the 

method of Cramer-von Mises (CVM), method of Anderson Darling (ANDA) and 

method of right-tail Anderson Darling (RANDA) to estimate the OEST parameters. 

This is done to find the best estimation method for estimating the parameters of the 

OEST for complete samples. 

 

3.1 The ML  

The ML is considered in estimating the unknown parameters of the OEST for 

complete samples. Let 1 2, , , Sy y y be the observed values of size ( )S  from the 

procedures with parameter vector  ,    . Hence, the log-likelihood function 

l  takes the form 

 
 

 2

1 1 1

log log log 2 3 2 log 2 log 1
1

S S S
j
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j j jj
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  

       


         (7) 

where  21 2 2  j j jk y y . The ML estimates of the unknown parameters  and 

 of the OEST can be found by maximizing Equation (7) using the R-software 

(Optim function), SAS (PROC NLMIXED), or solving the nonlinear likelihood 

equations found by differentiating the log-likelihood function l . The associated 

score function   ,
l l

U 
 

  
  

  
, are given as: 

 
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where 2 j jp y  . 

The Newton-Rapshon method can be utilized in solving the nonlinear 

equations system. For simplicity, from   0   U l    for fixed  . The solution 

for ̂  can be expressed as 

 1

ˆ

1

S
j

j j

S

k

k











               (8) 

The ML estimates of  can be calculated from Equation (8) as ̂ while 

statistical softwares such as R-software can be used in solving for the ML estimates 

of   denoted by ̂ numerically via iterative methods from Equation (9). 

 
   2

1 1 1

3 1
0

2

S S S
j j

j j jj j j jj j j

y yS
U

p p p yp p y
  

   

    
 

           (9) 

 

3.2 The OLS and WLS  

Let      1: 2: :
, , ,

S S S S
y y y  be the ordered sample of size (s) from Equation (1) of 

the OEST. The OLS ˆ
OLS  and ˆ

OLS  can be found by minimizing:  

    
2

1

, , ( , )
S

j
j

OL F y j S    


  
    

where  ( , ) 1j S j S   , concerning    and   or equivalently obtained by solving 

the following differential equation 

     
1

, ( , ) , 0,  1,2
S

ij j
j

F y j S y i    


    
   , 

where 

           1 2, ,  and , ,
j j j j

y F y y F y       
 

 
   

 
       (10) 

The solutions of  i  for 1, 2i  can be found numerically. For more details, see 

Swain et al. (1988). 

Similarly, the WLS ˆ
WLS  and ˆ

WLS  can be found by minimizing: 

    
2

1 1

, ( , ) , ( , )
S S

j
j j

WL j S F y j S    
 
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    , 

where      
2

( , ) 1 2 1j S S S j S j      , relative to   and   or can be obtained by 

solving the following differential equation 

     
1

( , ) , ( , ) , 0,  1,2
S

ij j
j

j S F y j S y i    


     
   , 

where 
1 2 (. , ) and (. , )      are given in Equation (10). 

 



 
 
 

 
 Adubisi et al. 

                                                                 

 
 

1183 

3.3 The MPS  

The MPS estimator for the estimation of unknown parameters with an ordered 

sample 
     1: 2: :

, , ,
S S S S

y y y  from Equation (1) of the OEST and uniform spacing for 

this random sample, proposed by Cheng and Amin (1979, 1983) is given by 

       : 1:
, , ,j j S j S

D F y F y     


  , for 1,2, , 1j S  , where 
  0:

, 0
S

F y    , 

  1:
, 1

S S
F y  


  and  

1

1

, 1
S

j

j

D  




 . The MPS ˆ
MPS  and ˆ

MPS  can be obtained by 

maximizing the geometric mean (GM) of the spacing: 

   
1

1 1

1
, ,

S S

jj
GM D   

 



 
             (11) 

relative to   and   or by maximizing the logarithm of GM of the spacing: 

   
1

1

1
, log ,

1
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j

j

LGM D
S
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





 ,      

The MPS ˆ
MPS  and ˆ

MPS   of the OEST can be obtained by solving the differential 

equation 
       

1

: 1:
1

1
, , 0,  1, 2

,

S

i ij S j S
j j

y y i
D

   
 






     
  ,  

where 1 2(. , ) and (. , )      are given in Equation (10). 

 

3.4 The ANDA  

The ANDA ˆ
ANDA  and ˆ

ANDA  (Anderson and Darling, 1952) can be obtained for the 

OEST by minimizing the function given by 

         : 1 :
1

1
, 2 1 log , log ,

s

j S S j S
j

D S j F y F y
S
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 



      
        (12) 

relative to   and  . Likewise, the estimates can be obtained by solving the 

nonlinear equation  
  

  
  

  
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1
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S
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j
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F y F y
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 


 

  
    
 
 

 , 

where 
1 2 (. , ) and (. , )      are given in Equation (10). 

 

3.5 The CVM  

The CVM ˆ
CVW  and ˆ

CVW  (MacDonald, 1971) for the OEST parameters are obtained 

by minimizing the function given by: 

    
2

:
1

1 2( 1) 1
, ,

12 2

S

j S
j

j
CV F y

S S
   



  
   

 
          (13) 

relative to   and  . Solving the nonlinear equation, the CVM estimates can also 

be obtained:    ( : ):
1

2( 1) 1
, ( , ) 0,  1,2

2

S

i j Sj S
j

j
F y y i

S
   


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    

 
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where 
1 2 (. , ) and (. , )      are given in Equation (10). 

 

4. EGARCH Volatility Model 

The autoregressive conditional heteroscedasticity (ARCH) model was introduced 

by Engle (1982) for modeling time-varying volatility. Bollerslev (1986) proposed 

the symmetric generalized ARCH model (GARCH) to cater to the shortfalls of the 

ARCH model. However, the issue of leverage effect has been in the discussion for 

so long as recorded in the literature. 

In this research, the asymmetric exponential GARCH (EGARCH) model 

introduced by Nelson (1991) is considered. The EGARCH differs from the 

symmetric GARCH variance structure given that the natural log variance is used 

which suggests that parameters are unrestricted, that is, the parameters are allowed 

to take negative values while ensuring a positive conditional variance. Moreso, the 

EGARCH specification includes the asymmetric impact of positive and negative 

shocks on volatility. The log-return of daily assets is symbolized as tr . The 

EGARCH (1,1) model is defined as: 

2
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          (14) 

where 0 0 , 
1 0 , 

2 0 . Here, 
tz  is the conditional innovation density with 

  0tz   and  var 1tz  , 
t  is the conditional mean, 

3  is the leverage parameter, 

 2ln th  is conditional log variance at the present day t , 
1t  and  2

1ln th  are the error 

and conditional log variance on the preceding day 1t  , respectively. In asymmetric 

volatility models, negative shocks have a larger effect on volatility than positive 

shocks when the parameter 
3  is positive. The accuracy of volatility predictions is 

directly affected by the innovation process distributional assumption (Altun et al., 

2018). The distributional assumption on the innovation directly impacts on the 

EGARCH models estimates and forecasts. These conditional innovation 

distributions have their curious issues which the most remarkable downside is the 

lack of stability under aggregation (Calzolari et al., 2014). Additionally, the tail 

strength of the EGARCH models remains too short even with the existing 

conditional densities which makes it difficult to capture properly the stylized 

features in financial asset returns (Feng and Shi, 2017). This causes an issue of 

underestimation and overestimation of true returns volatility. The commonly 

existing conditional innovation densities are provided in the Appendix. 
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4.1 New Conditional Innovation Density 

For the standardized OEST distribution introduced in subsection 2.2, the log-

likelihood function takes the form 

     2 2

1 1 1 1

ln ln ln 2 3 2 ln 2 ln 1 0.5 ln
1

T T T T
t

t t t

t t t tt

l T T T z h


     
   

           
      (15) 

where  0 1 2 3, , , , , ,        denotes the parameter vector of the EGARCH-Odd 

exponentiated skew-t (EGARCH-OEST),   is the skewness parameter,    is the 

shape parameter and 
2

1

2 2

t

t

t

z

z




 
  
  

. 

 

5. Evaluation of Volatility Models 

5.1 Model Selection Criteria 

The selection of the most appropriate EGARCH model for modeling and 

forecasting financial data sets is done using two information criteria. The modified 

Akaike information criteria (AIC) and Bayesian information criteria (BIC) 

proposed by Brooks and Burke (2003) are utilized in selecting the best model under 

the conditional innovation densities. The modified AIC and BIC criteria are given 

by: 

 

2 2

log 2e

k LL
AIC

T T

k T LL
BIC

T T

 

 

            (16) 

where k  is the total number of estimated parameters, the estimated log-likelihood 

value is denoted by LL  and T  is the sample size. The EGARCH model with the 

least AIC and BIC values is regarded as the most appropriate model under the 

specified conditional innovation density. 

 

5.2 Forecasts Performance  

The forecasts performance of the EGARCH models is appraised using the mean 

square error (MSE), root mean square root (RMSE), and mean absolute error 

(MAE). The performance measures for the volatility forecasts are given by: 

 
2

1

1 ˆ
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MSE h h
T 
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 
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where ˆ
th  and represents the volatility forecast and realized volatility, and T  is the 

sample size. The model with the least performance measures is regarded as the 

most appropriate for predicting the volatility of the daily log-returns. 

 

5.3 Monte Carlo Experiments 

The Monte Carlo experiments are provided to compare the performance of the six 

methods discussed in Section 3. Three different parameter combinations (Comb) 

are considered: Comb 1  0.8, 1.5 ,    Comb 2  1.5, 2.0 ,    Comb 3 

 2.0, 0.8   . The datasets are generated from the OEST model under these 

combinations by selecting S = 20, 75, 150, and 250. For each combination,

3000N  Pseudo-random samples are generated from the inverse cdf of the OEST 

model. The experiments are executed in an R-environment and the average values 

(AVEs), average absolute-biases (AABs), and root-mean-square errors (RMSEs) 

of the parameter (Pa.) estimates are calculated with: 

 
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           (18) 

where  ,    and  ˆ ˆˆ,   . The AVE, AAB, and RMSE values are provided 

in Tables 1 to 3 and Figures 3 to 8 depict the AAB and RMSE plots. The following 

conclusions are reached: 

 The estimators are asymptotically unbiased given that their biases converge 

to zero as the sample size increases. 

 The estimators are consistent given that their RMSE tends to zero for large 

sample sizes. 

 The ML and MPS perform better than the other estimators in terms of 

minimum biases and RMSE in most cases. 

 The LSQ has the largest biases and RMSEs compared to other estimators in 

most cases. 

 Therefore, the unknown parameters of the OEST model can be best estimated 

using either the ML or MPS methods. 
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Table 1. Monte Carlo Experiment Results of the Estimators for  0.8, 1.5    

S Measures Pa. ML MPS ANDA CVM OLS WLS 

20 

AVE 
  0.8289 0.8176 0.8252 0.8386 0.8264 0.8249 

  1.4833 1.9236 1.6377 1.5550 1.8107 1.7394 

AAB 
  0.0289 0.0176 0.0252 0.0386 0.0264 0.0249 

  0.0167 0.4236 0.1377 0.0550 0.3107 0.2394 

RMSE 
  0.2262 0.1990 0.2174 0.2438 0.2167 0.2169 

  0.6701 0.9709 0.7810 0.7685 0.9461 0.8642 

75 

AVE 
  0.8058 0.8021 0.8058 0.8077 0.8063 0.8056 

  1.4938 1.6325 1.5321 1.5043 1.5694 1.5382 

AAB 
  0.0058 0.0021 0.0058 0.0077 0.0063 0.0056 

  0.0062 0.1325 0.0321 0.0043 0.0694 0.0382 

RMSE 
  0.1099 0.1055 0.1100 0.1145 0.1118 0.1102 

  0.3356 0.3908 0.3611 0.3841 0.4052 0.3674 

150 

AVE 
  0.8011 0.7988 0.8012 0.8021 0.8015 0.8010 

  1.4906 1.5671 1.5093 1.4972 1.5292 1.5095 

AAB 
  0.0011 0.0012 0.0012 0.0021 0.0015 0.0010 

  0.0094 0.0671 0.0093 0.0028 0.0292 0.0096 

RMSE 
  0.0765 0.0748 0.0769 0.0793 0.0784 0.0769 

  0.2331 0.2541 0.2464 0.2653 0.2720 0.2485 

250 

AVE 
  0.8008 0.7992 0.8008 0.8014 0.8010 0.8007 

  1.4927 1.5420 1.5038 1.4964 1.5155 1.5029 

AAB 
  0.0008 0.0008 0.0008 0.0014 0.0010 0.0007 

  0.0073 0.0420 0.0038 0.0036 0.0155 0.0029 

RMSE 
  0.0595 0.0586 0.0600 0.0619 0.0614 0.0601 

  0.1813 0.1921 0.1905 0.2053 0.2083 0.1911 

Source: Research finding. 
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Figure 3. AAB for the Estimates of the Six Estimation Methods 

Source: Research finding. 

 

 
Figure 4. RMSE for the Estimates of the Six Estimation Methods 

Source: Research finding. 

 

Table 2. Monte Carlo Experiment Results of the Estimators for  1.5, 2.0    

S Measures Pa. ML MPS ANDA CVM OLS WLS 

20 AVE   1.6262 1.4890 1.5717 1.6572 1.5864 1.5646 

  1.9539 2.5850 2.2206 2.1140 2.4895 2.3709 

AAB   0.1262 0.0111 0.0717 0.1572 0.0864 0.0646 

  0.0461 0.5848 0.2206 0.1140 0.4895 0.3709 

RMSE   0.4844 0.3632 0.4277 0.7380 1.6801 0.7633 

  0.9335 1.3681 1.1599 1.1697 1.4475 1.2874 

75 AVE   1.5251 1.4820 1.5158 1.5350 1.5117 1.5150 

  1.9872 2.1920 2.0531 2.0126 2.1075 2.0588 

AAB   0.0251 0.0175 0.0158 0.0350 0.0117 0.0150 

  0.0128 0.1915 0.0513 0.0126 0.1075 0.0588 

RMSE   0.1882 0.1745 0.1906 0.2204 0.2084 0.1958 
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  0.4581 0.5406 0.5145 0.5611 0.5942 0.5244 

150 AVE   1.5107 1.4860 1.5065 1.5149 1.5038 1.5064 

  1.9855 2.1000 2.0169 1.9994 2.0458 2.0157 

AAB   0.0107 0.0136 0.0065 0.0149 0.0038 0.0064 

  0.0145 0.1005 0.0169 0.0006 0.0458 0.0157 

RMSE   0.1294 0.1246 0.1324 0.1460 0.1423 0.1338 

  0.3191 0.3519 0.3496 0.3860 0.3966 0.3532 

250 AVE   1.5069 1.4910 1.5046 1.5096 1.5030 1.5047 

  1.9892 2.0650 2.0075 1.9967 2.0244 2.0053 

AAB   0.0069 0.0092 0.0046 0.0096 0.0030 0.0047 

  0.0108 0.0649 0.0075 0.0033 0.0244 0.0053 

RMSE   0.0993 0.0971 0.1025 0.1122 0.1150 0.1035 

  0.2474 0.2645 0.2697 0.2982 0.3028 0.2708 

 Source: Research finding. 

 

 
Figure 5. AAB for the Estimates of 1.5, 2.0    for the Six Estimation Methods 

Source: Research finding. 
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Figure 6. RMSE for the Estimates of 1.5, 2.0    for the Six Estimation Methods 

Source: Research finding. 
 

 

Table 3. Monte Carlo Experiment Results of the Estimators for  2.0, 0.8    

S Measures Pa. ML MPS ANDA CVM OLS WLS 

20 AVE   2.2760 1.9790 2.1392 2.2919 2.0694 2.1000 

  0.7744 1.0470 0.9004 0.8643 1.0272 0.9692 

AAB   0.2760 0.0209 0.1392 0.2919 0.0694 0.1000 

  0.0256 0.2473 0.1004 0.0643 0.2272 0.1692 

RMSE   0.9858 0.5850 0.7146 1.3641 0.8095 0.8908 

  0.3962 0.5839 0.5101 0.5200 0.6511 0.5662 

75 AVE   2.0485 1.9644 2.0281 2.0702 2.0230 2.0287 

  0.7931 0.8823 0.8245 0.8067 0.8481 0.8262 

AAB   0.0485 0.0356 0.0281 0.0702 0.0230 0.0287 

  0.0069 0.0823 0.0245 0.0067 0.0481 0.0262 

RMSE   0.2667 0.2409 0.2736 0.3488 0.3220 0.2895 

  0.1922 0.2283 0.2212 0.2449 0.2598 0.2257 

150 AVE   2.0224 1.9740 2.0134 2.0313 2.0091 2.0141 

  0.7933 0.8440 0.8081 0.8004 0.8206 0.8071 

AAB   0.0224 0.0255 0.0134 0.0313 0.0091 0.0141 

  0.0067 0.0440 0.0081 0.0004 0.0206 0.0071 

RMSE   0.1799 0.1712 0.1881 0.2215 0.2134 0.1928 

  0.1338 0.1484 0.1498 0.1681 0.1729 0.1515 

250 AVE   2.0142 1.9827 2.0093 2.0199 2.0067 2.0101 

  0.7951 0.8285 0.8037 0.7990 0.8110 0.8025 

AAB   0.0142 0.0173 0.0093 0.0199 0.0067 0.0101 



 
 
 

 
 Adubisi et al. 

                                                                 

 
 

1191 

  0.0049 0.0285 0.0037 0.0010 0.0110 0.0025 

RMSE   0.1362 0.1319 0.1444 0.1670 0.1633 0.1469 

  0.1036 0.1114 0.1154 0.1297 0.1318 0.1159 

 Source: Research finding. 

 

 
Figure 7. AAB for the Estimates of 2.0, 0.8    for the Six Estimation Methods 

Source: Research finding. 

 

 
 

Figure 8. RMSE for the Estimates of 2.0, 0.8    for the Six Estimation Methods 

Source: Research finding. 

 

6. Empirical Finding 

6.1 Data Report 

To appraise the performance of the EGARCH models in forecasting daily 

volatility, the First Bank Nigeria (FBN) stock price is used. The utilized dataset 

consists of 2304 daily log-returns from 31/01/2012 to 31/05/2021. The estimation 
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process is carried out using 2203 daily log-returns and 101 daily log-returns are 

used for forecasting (out-of-sample) performance assessment of the models. The 

summary statistics of the daily log-returns of the FBN index for the estimation and 

prediction processes are provided in Table 4. Figure 9 displays the daily log-returns 

of the FBN index and histogram of log-returns.  

Table 1 shows positive skewness and high excess kurtosis, leading to a large 

Jarque-Bera (JB) statistic (p < 0.001) signifying that the daily log-returns for the 

estimation process have non-normality characteristics. Further, the ARCH 

Lagrange-multiplier (LM) and Ljung Box-Q tests at lag 10, indicate the incidence 

of conditional heteroscedasticity and autocorrelation in the FBN log-returns. 
 

Table 4. Summary Statistics for the FBN Daily Log-Returns 

Estimation process 

Number of 

observations 
Mean Median Minimum Maximum Std Dev. 

2203 -0.015 0.000 -10.536 9.758 2.747 

Skewness Kurtosis Jarque-Bera ARCH (10) Q (10)  

0.178 2.301 499.84 (p< 0.0001) 187.01 (p < 0.0001) 362.54(p < 0.0001)  

Prediction process 

Number of 

observations 
Mean Median Minimum Maximum Std Dev. 

101 7.304 7.300 6.900 7.850 0.158 

Skewness Kurtosis     

0.430 1.029     

 Source: Research finding. 
 

7.  Estimation of EGARCH Models Parameters 

The EGARCH (1,1) model defined in Eq (15) is estimated under nine different 

innovation densities:  normal (NORM), student-t (ST), generalized error (GE), 

skew-normal (SNORM), skew student-t (SST), skew generalized error (SGE), 

generalized hyperbolic (GHYB) and Johnson (SU) reparametrized (JSU). Table 5 

provides the estimated parameters of the EGARCH models. The rugarch package 

in the R language of programming is used in estimating the parameters of the 

EGARCH-NORM, EGARCH-ST, EGARCH-GE, EGARCH-SNORM, 

EGARCH-SST, EGARCH-SGE, EGARCH-GHB and EGARCH-JSU while the 

Optim function in R-software is utilized to maximize the log-likelihood function 

of EGARCH-OEST. 



 
 
 

 
 Adubisi et al. 

                                                                 

 
 

1193 

 
Figure 9. The Daily Log-Returns of the FBN Stock Price (Top Panel) and Histogram 

of Daily Log-Returns (Bottom Panel) 

Source: Research finding. 
 

As observed in Table 5, the EGARCH-OEST model has the highest log-

likelihood (LL) value and exhibits a greater fit to the standardized residuals 

compared to others. The parameter estimates of the conditional variance are highly 

statistically significant and is significant at a standard level which shows that the 

daily log-returns have a leverage effect. Hence, the impact of the shocks is 

asymmetric which implies that the impact of negative shocks on volatility is higher 

than positive shocks of the same size. Some model selection statistic values that 

show that the EGARCH-OEST has the least AIC and BIC values relative to others 

are also provided in Table 5.  These results reveal that the EGARCH-OEST model 

is best for modeling the FBN log-returns. 



 
 
 
 
 

Table 5. Parameter Estimates of the EGARCH (1,1) for FBN Log-Returns Assuming Nine Different Innovation Densities 

Par NORM SNORM ST SST GE SGE GHB JSU OEST 

  -0.0625‘***’ -0.0526 -0.0623‘***’ -0.0537 0.0645‘***’ 0.1905‘***’ -0.0469 -0.0522 3.886E-08‘*’ 

0  0.3434‘***’ 0.3407‘***’ 0.3019 0.8333‘***’ 0.2828‘***’ 1.3161‘***’ 0.2770‘***’ 7.5206 3.725E-08‘*’ 

1  0.0068 0.0059 -0.0048 -0.0368 0.0147 -9.1048‘***’ -0.0043 -0.0891 0.1477‘*’ 

2  0.8356‘***’ 0.8370‘***’ 0.8583‘***’ 0.8179‘***’ 0.8506‘***’ 0.8521‘***’ 0.8493‘***’ 0.8996 0.7576‘***’ 

3  0.4118‘***’ 0.4087‘***’ 0.6646 2.1670‘***’ 0.5702‘***’ -7.4675‘***’ 0.5615 0.1635 0.3715‘*’ 

  - 1.0138‘***’ - - - - 0.2500‘*’ - - 

  - - 3.1364‘***’ 2.0656‘***’ 0.8723‘***’ - - - - 

  - - - 1.0093‘***’ - 0.1005‘***’ - - - 

  - - - - - 1.0002‘***’ - - - 

  - - - - - - 0.0009 - - 

  - - - - - - 0.6316‘***’ - - 

  - - - - - - - -0.0000 - 

  - - - - - - - 0.1703 1.5878‘*’ 

  - - - - - - - - 1.1473‘***’ 

LL -5156 -5156 -5002 -5019 -4963 -6374 -4971 -7738 -4445 

AIC 4.6854 4.6861 4.5462 4.5627 4.5113 5.7931 4.5203 7.0317 4.0420 

BIC 4.6983 4.7016 4.5617 4.5808 4.5268 5.8112 4.5410 7.0498 4.0612 

Source: Research finding. 

Note: Significance levels: < 0.05’***’, < 1’*’. 
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Table 6 provides the diagnostic test results for the EGARCH model under the 

various innovation densities used in this study. As seen from Table 6, the Ljung 

Box-Q statistic (p > 0.05) indicates that the squared standardized residuals from 

the EGARCH-OEST model exhibit no sign of autocorrelation. Also, the ARCH-

LM statistic (p > 0.05) indicates that the standardized residuals from the 

EGARCH-OEST model exhibit no additional conditional heteroscedasticity, that is, 

the conditional variance equation is specified correctly. Thus, the results reveal 

that standardized OEST distribution provides a better fit to the standardized 

residuals of the EGARCH (1,1) model. 
 

Table 6. Estimated EGARCH Models Diagnostic Tests 

Model 
Ljung-Box  

Statistic 
p-value 

ARCH-LM 

Statistic 
p-value 

EGARCH- NORM 8.400 0.900 0.310 0.600 

EGARCH- SNORM 8.356 0.909 0.353 0.552 

EGARCH- ST 19.000 0.200 1.400 0.200 

EGARCH- SST 20.499 0.148 3.029 0.082 

EGARCH- GE 16.000 0.400 0.920 0.300 

EGARCH-SGE 0.001 1.000 0.001 0.983 

EGARCH-GHB 16.359 0.359 0.907 0.359 

EGARCH-JSU 2.16E-7 1.000 2202 2.2E-16 

EGARCH- OEST 11.526 0.714 10.877 0.367 

 Source: Research finding. 
 

8. Forecasts Evaluation of the GARCH-type Models 

The evaluation metrics of the EGARCH-OEST, and other models for the out-of-

sample prediction are provided in Table 7. The evaluation metrics indicate that the 

EGARCH-OEST has the least MSE, RMSE and MAE values compared to other 

models under the various innovation densities. Hence, the EGARCH-OEST model 

is statistically efficient and displays superior ability in predicting the FBN 

volatility relative to other models. 
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Table 7. Forecasts Evaluation Metrics of the Estimated EGARCH Models 

Model MSE RMSE MAE 

EGARCH- NORM 4.298 2.073 1.200 

EGARCH- SNORM 4.297 2.073 1.196 

EGARCH- ST 4.298 2.073 1.200 

EGARCH- SST 4.297 2.073 1.196 

EGARCH- GE 4.298 2.073 1.195 

EGARCH-SGE 4.296 2.073 1.194 

EGARCH-GHB 4.296 2.073 1.194 

EGARCH-JSU 4.297 2.073 1.196 

EGARCH- OEST 3.838 1.959 1.125 

 Source: Research finding. 
 

9. Conclusion 

The estimation of the odd exponentiated skew-t (OEST) model parameters using 

the maximum product of spacing, Anderson-Darling, right Anderson Darling, 

maximum likelihood, Cramer-von Mises, least squares, and weighted least squares 

estimation procedures are considered in this study. The density and cumulative 

functions, failure rate function, quantile function, standardized density function, 

location-scale density, and the mathematical expressions of the estimators 

concerning the OEST model are provided. However, it is practically indeterminate 

to compare these estimators theoretically, hence Monte Carlo experiments are 

carried out to study the performance of the estimators. The Monte Carlo results 

indicates that the estimators are asymptotically unbiased and consistent given that 

their biases converge to zero as the sample size increases. The MLE and MPS 

having more advantage with least RMSE values than the other estimators. 

Furthermore, the standardized odd exponentiated skew-t (OEST) density is 

introduced as a new distributional innovation assumption for the EGARCH 

volatility model. The modeling of the volatility of FBN log-returns with the 

EGARCH (1,1) under OEST innovation density relative to eight existing innovation 

densities is carried-out. The empirical findings confirm that based on the log-

likelihood, AIC and BIC, the EGRACH-OEST model is optimally the best model. 

Likewise, the EGRACH-OEST model has the least forecast performance measures 

among other models, hence the standardized OEST distribution provides better fit 

to the standardized residuals of the EGARCH (1,1) model.  In conclusion, the 

EGARCH-OEST model has better in- and -out of-samples performance than other 

models for the FBN log-returns.  
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Appendix 

Frequently Utilized Innovation Densities in Garch-Type Models 

Normal Distribution 

For the standardized normal distribution, the log-likelihood function of 
tr  takes the 

form: 

   2 2

1 1

0.5 ln 2 ln
T T

t t

t t

l T z h 
 

 
    

 
    

where  0 1 2 3, , , ,      denotes the parameter vector of the EGARCH-normal 

(EGARCH-N) model. 

 

Student-t Distribution 

For the standardized student-t distribution, the log-likelihood function takes the 

form: 

       
2
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1

1
ln 0.5ln 2 ln 0.5 1 ln 1 ln

2 2 2

T

t
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v v z
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  

where  0 1 2 3, , , , ,v      denotes the parameter vector of the EGARCH-Student-

t (EGARCH-ST),  .  is the gamma function and v  is the parameter that controls 

the distribution tails  2 v   . 

 

Generalized Error Distribution 

For the standardized generalized error distribution, the log-likelihood function 

takes the form: 
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where  0 1 2 3, , , , ,v      denotes the parameter vector of the EGARCH-

Generalized error (EGARCH-GED),  .  is the gamma function, v  is the tail-

thickness parameter  0     and 
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generalized error distribution (GED) are the standard normal distribution when 

2v  , Laplace distribution when 1v   and uniform distribution when v  . 

 

Skew Normal Distribution 

For the standardized skew normal distribution, the log-likelihood function takes 

the form: 

           2

1

ln 2 ln ln 0.5ln
T

t t t

t
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

               

where  0 1 2 3, , , , ,       denotes the parameter vector of the EGARCH-

Skew Normal (EGARCH-SN),   is the skew parameter,  and    are the mean 

and standard deviation of the skew normal distribution, respectively. 

 

Skew Student-t Distribution 

For the standardized skew Student-t distribution, the log-likelihood function takes 

the form:             
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

    

where  0 1 2 3, , , , , ,v       denotes the parameter vector of the EGARCH-Skew 

Student-t (EGARCH-SST),    is the degree of freedom,  .  denote the gamma 

function,    is the skew parameter, and: 
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Skew Generalized Error Distribution 

For the standardized skew generalized error distribution the log-likelihood 

function takes the form: 
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     

   

where  0 1 2 3, , , , , ,v       denotes the parameter vector of the EGARCH-Skew 

Generalized error (EGARCH-SGED),    is the degrees of freedom,    is the skew 

parameter ( 1 1)    and:  
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Generalized Hyperbolic Distribution 

For the standardized generalized hyperbolic distribution, the log-likelihood 

function takes the form: 
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         
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  





   

where  0 1 2 3, , , , , , ,         denotes the parameter vector of the 

EGARCH-Generalized Hyperbolic (EGARCH-GHB),  is scale parameter,  is 

location parameter,   is the asymmetry parameter, ,     are real parameters,   

is the modified Bessel function of third order. 

 

Johnson Reparametrized (SU) Distribution 

For the standardized Johnson reparametrized (SU) distribution, the log-likelihood 

function takes the form: 

   
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 
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  
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             

        
    

where  0 1 2 3, , , , , ,        denotes the parameter vector of the EGARCH-

Johnson SU (EGARCH-JSU),   is the density function of  0,1N , ,     are 

location and scale parameters, ,     denote the skew and kurtosis parameters. 
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