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Abstract  

In the face of insufficient energy production in power systems, load shedding in residential 

areas has become unavoidable. This study evaluates the willingness to pay (WTP) among 

households in Kerman, Iran, to prevent power outages. A survey of 800 households was 

conducted in May 2021 using a one-and-one-half-bound dichotomous choice (OOHB-DC) 

approach, integrated with a spike model to address zero WTP responses. The questionnaire 

was designed to clearly communicate the study’s purpose, ensuring meaningful responses. 

Particle swarm optimization (PSO) was employed to estimate model parameters. Findings 

indicate that the average monthly WTP per household is 92,886 Rials (USD 0.37), with 

an annual aggregate value of 972 billion Rials (USD 3.89 million). These results, which 

are statistically significant, suggest that substantial investments are needed by utility 

providers to maintain reliable power supply in residential areas.  

Keywords: OOHB-DC Survey, Particle Swarm Optimization, Residual Consumers, 

Willingness to Pay.  

JEL Classification: C51, G53, R21. 

 

1. Introduction 

Electricity is an essential component of modern life, underpinning critical services 

such as healthcare, transportation, and communication infrastructure. Power 

outages disrupt these services, affecting societal well-being. Due to limited energy 

generation, load shedding is often necessary to protect equipment and stabilize grid 

voltage. To minimize disruption, utility companies must prioritize outages for 

customers with lower willingness to pay (WTP), thereby reducing economic and 
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social impacts. Understanding consumer preferences and behaviors is therefore 

critical for effective power management. 

Two primary methods for assessing WTP are the choice experiment (CE) 

and contingent valuation method (CVM). In CE, goods or services are defined by 

their attributes, and respondents rank or select preferred options, allowing WTP to 

be inferred indirectly (Speckemeier et al., 2021). Conversely, CVM simulates a 

hypothetical market where respondents state their maximum WTP for non-market 

goods under specific conditions. CVM approaches include iterative bidding (IB), 

payment card (PC), dichotomous choice (DC), and open-ended (OE) formats (Tian 

et al., 2011).   

In IB, respondents are offered an initial bid, which is adjusted based on their 

responses until their WTP is determined (Randall et al., 1974). The PC method, 

introduced by Carson et al. (1984), asks respondents to select their maximum WTP 

from a list of values (Venkatachalam, 2004). OE formats allow respondents to 

freely state their WTP without guidance. DC methods include single-bounded (SB-

DC), double-bounded (DB-DC), and one-and-one-half-bounded (OOHB-DC) 

approaches. SB-DC involves a simple yes/no response to a bid, while DB-DC uses 

two sequential questions to refine WTP estimates, yielding four outcomes. OOHB-

DC, discussed later, generates six outcomes, offering a balance of simplicity and 

precision (Bateman et al., 2001; Cooper et al., 2002).   

Despite their strengths, DC methods face challenges like starting point bias 

and inconsistency (Arrow et al., 1993). OOHB-DC mitigates some of these issues, 

making it a preferred choice, as endorsed by NOAA (Ready et al., 2001). 

Additionally, zero WTP responses can skew results, but the spike model, proposed 

by Kriström (1997), addresses this by incorporating zero responses into the 

likelihood function.   

Prior research employing choice experiments (CE) has focused on ranking 

attributes to determine respondents’ willingness to pay (WTP) for reliable 

electricity. For example, Hensher et al. (2014) explored household preferences for 

avoiding disruptions in residential power supply, using CE to identify preferences 

and estimate a mean WTP of USD 23 to prevent brief outages. Similarly, Morrissey 

et al. (2018) applied a CE approach to assess the economic impact of power cuts 

in northwest England, finding that households were willing to pay an average of 

£7.37 to avoid outages during weekdays. Carlsson and Martinsson (2008) 

conducted a CE survey among Swedish households, revealing that WTP for 

reducing outages increased with outage duration and were higher for disruptions 

during weekends or winter months, based on random parameter logit analysis. 
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In contrast, studies using contingent valuation methods (CVM) have directly 

estimated outage costs. Reichl et al. (2013) developed a CVM model to quantify 

economic losses from power interruptions, calculating an average value of lost load 

at €17.1 per kWh for Austrian households and non-households during a 1-hour 

outage on a summer workday morning. Woo et al. (2014) utilized a CVM survey 

with ordered logit analysis to assess residential outage costs in Hong Kong, 

estimating an average WTP of USD 45 for a 1-hour outage. Ozbafli and Jenkins 

(2015) investigated WTP for improved electricity services in North Cyprus, using 

payment ladder CVM data from 350 interviews, finding households willing to pay 

a 13.8% increase in their monthly electricity bill to avoid outages. Kim et al. (2017) 

surveyed 1,000 households in South Korea with a CVM approach, determining a 

mean monthly WTP of KRW 1,522 (USD 1.41) to prevent power interruptions. 

A study involving 871 online participants in Vietnam was carried out from 

April to August 2022 to assess preferences using a cross-sectional approach. A 

questionnaire employing a discrete choice experiment (DCE) framework was 

created and distributed via snowball sampling, with data analyzed conjointly on 

the Qualtrics platform. The study explored factors such as prior COVID-19 

infection and vaccination, health conditions, willingness to vaccinate, willingness 

to pay, and additional variables (Bach Xuan Tran, 2022). 

This study employs a contingent valuation approach utilizing a one-and-one-

half-bound dichotomous choice (OOHB-DC) survey, integrated with a spike 

model to address zero willingness-to-pay (WTP) responses. Additionally, we apply 

particle swarm optimization (PSO) as a novel technique for parameter estimation 

in this domain. To enhance the survey’s validity, the questionnaire was designed 

to clearly explain power outage impacts and ensure respondents understood the 

context, making responses reliable and meaningful. A hypothetical payment 

scenario was created to elicit bids from participants. The OOHB-DC spike model 

was used to derive WTP values. Notably, due to the COVID-19 pandemic, 

interviews were conducted via telephone. 

 

2. Methodology 

As highlighted in prior research, the OOHB-DC format offers notable benefits for 

WTP estimation. This section outlines a method combining an OOHB-DC survey 

with a spike model to determine the average WTP among residential consumers. 
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2.1 DC Survey 

The OOHB-DC approach, developed by Cooper et al. (2002), employs a 

questionnaire with two bids: a lower bid (BL) and a higher bid (BH). The 

interviewer randomly presents BL first to half of the participants and BH first to the 

other half. If a participant accepts BL, BH is then offered; if BL is rejected, no further 

questions are posed. Similarly, if BH is accepted when offered first, no additional 

questions follow, but if BH is rejected, BL is proposed. This format often results in 

numerous zero WTP responses. To address these, Kriström (1997) introduced the 

spike model for the OOHB-DC framework. In this model, participants who reject 

BL or both BH and BL are asked if they are willing to pay any amount. A positive 

response indicates a WTP between zero and BL, while a negative response signifies 

a zero WTP. Figure 1 illustrates the structure of the WTP elicitation questions for 

this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. The structure of OOHB-DC spike model to extract responder's WTP 

Source: Research finding. 

 

2.2 OOHB-DC Spike Model 

Hanemann (1984) pioneered the utility difference model, offering a framework to 

develop Hicksian welfare measures for evaluating dichotomous survey responses 
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and estimating willingness to pay (WTP). This model assumes that each 

respondent’s discrete choice reflects a process of maximizing utility. In the context 

of power outages, individuals are willing to pay a bid to avoid disruptions if the 

utility derived from this payment exceeds the utility of experiencing an outage. 

The indirect utility function mathematically represents this concept as follows: 

𝑉(𝑌, 𝐼 − 𝐵; 𝐷) + 𝜀𝑌 ≥ 𝑉(𝑁, 𝐼; 𝐷) + 𝜀𝑁 

Or 

∆𝑉 = 𝑉(𝑌, 𝐼 − 𝐵; 𝐷) −  𝑉(𝑁, 𝐼; 𝐷) ≥ 𝜀𝑁−𝜀𝑌 

In this model, "Y" denotes the state where a power outage occurs, while "N" 

indicates no outage. The indirect utility function is represented by "V", with "I" 

signifying household income, "D" capturing socio-demographic characteristics, 

and "B" representing the proposed bid. The terms "𝜀𝑌"  and "𝜀𝑁"  denote error 

components. A positive ∆V indicates that respondents will answer “yes” to the bid, 

leading to the following relationship: 

𝑃𝑟("𝑌𝑒𝑠") = 𝑃𝑟(𝑊𝑇𝑃 ≥ 𝐵) = 1 − 𝐺𝑊𝑇𝑃(𝐵, 𝜃) 

Here, 𝑊𝑇𝑃 represents the customer’s willingness to pay, while 

𝐺𝑊𝑇𝑃(𝐵, 𝜃) denotes the cumulative distribution function of respondents at bid B. 

Additionally, θ is a parameter vector capturing socio-economic characteristics that 

influence the likelihood of responding “yes” to a proposed bid. 

In the OOHB-DC Spike model, the initial questionnaire is crafted from a 

pilot survey with a small group of participants, establishing bid intervals as (BH1, 

BL1), (BH2, BL2), ..., (BHn, BLn), where n denotes the number of intervals. These 

intervals are then evenly applied across the sample population, with an equal 

number of respondents first presented with either BL or BH bids. The interviewer 

proposes the bid, and the participant responds “yes” if willing to pay or “no” if 

unwilling. 

As noted, the OOHB-DC spike model’s elicitation process generates eight 

possible response combinations. When the lower bid (BL) is offered first, 

respondents may answer “yes-yes,” “yes-no,” or “no.” Conversely, when the 

higher bid (BH) is presented initially, the responses can be “yes,” “no-yes,” or “no-

no.” Per the spike model, if a respondent answers “no-no” to BH or “no” to BL, 

they are asked an additional question about their willingness to pay any amount. A 

“yes” response indicates a positive WTP less than BL, while a “no” response 

signifies a WTP of zero. So we have  Ii
YY, Ii

YN, Ii
Y, Ii

N, Ii
NY, Ii

NN, Ii
TY and Ii

TN as follow: 

((ith interviewee's answer is “yes-yes”  𝐼𝑖
𝑌𝑌 = 1 

(ith interviewee's answer is “yes-no”) Ii
YN = 1 
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 (ith interviewee's answer is “yes”) Ii
Y = 1 

(ith interviewee's answer is “no”) Ii
N = 1 

(ith interviewee's answer is “no-yes”) Ii
NY = 1 

(ith interviewee's answer is “no-no”) Ii
NN = 1 

 (ith interviewee's answer to additional question is “yes”) Ii
𝑇Y = 1 

(ith interviewee's answer to additional question is “no”) Ii
𝑇N = 1 

Here, "I" denotes the respondent index, and 1(.) represents an indicator 

function, which takes the value 1 if its condition is true and 0 otherwise. As 

previously noted, each individual’s observed response is assumed to reflect a utility 

maximization process. To estimate the parameter vector θ, the logarithmic 

likelihood function is maximized. The log-likelihood function for the OOHB-DC 

spike model is formulated as follows: 

𝑙𝑛(𝐿) = ∑[(𝐼𝑖
𝑌𝑌 + 𝐼𝑖

𝑌) × 𝑙𝑛(1 − 𝐺𝑊𝑇𝑃(𝐵𝐻 , 𝜃)) + (𝐼𝑖
𝑌𝑁 + 𝐼𝑖

𝑁𝑌)

𝑅

𝑖=1

× 𝑙𝑛(𝐺𝑊𝑇𝑃(𝐵𝐻 , 𝜃) − 𝐺𝑊𝑇𝑃(𝐵𝐿 , 𝜃)) + 𝐼𝑖
𝑇𝑌(𝐼𝑖

𝑁𝑁 + 𝐼𝑖
𝑁)

× 𝑙𝑛(𝐺𝑊𝑇𝑃(𝐵𝐿 , 𝜃) − 𝐺𝑊𝑇𝑃(0, 𝜃)) + 𝐼𝑖
𝑇𝑁(𝐼𝑖

𝑁𝑁 + 𝐼𝑖
𝑁) × 𝑙𝑛(𝐺𝑊𝑇𝑃(0, 𝜃))] 

Kriström (1997) have showed assuming θ = (θ0, θ1) yields: 

𝐺𝑊𝑇𝑃(𝐵, 𝜃) = {
(1 + 𝑒−(𝜃0+𝜃1𝐵)−1             ;         𝐵 > 0

(1 + 𝑒−(𝜃0)−1                      ;         𝐵 = 0
 0                                            ;        𝐵 < 0

 

According to this equation the spike is defined by (1 + e−(θ0)−1 and the 

mean WTP in the spike model is defined as follows: 

𝐶+ = (1/𝜃1) × 𝐿𝑛(1 + exp (𝜃0)) 

In order to analyze the effect of respondent's attitudes or socio-economic 

characteristics on the probability of answering “yes” to a given bid, it is necessary 

to include covariates in the model. If the covariates are considered, "𝜃0" is replaced 

by "𝜃0 + 𝑥𝑖
′𝜃", where "𝑥𝑖

′" is the vector of respondent's characteristics and "𝜃" is the 

parameter vector to be estimated. 

 

2.3 Maximizing Log-Likelihood Spike Model 

This study utilizes particle swarm optimization (PSO) to maximize the log-

likelihood function of the OOHB-DC spike model. Introduced by Eberhart and 

Kennedy in 1995, PSO is a population-based stochastic search method operating 

in a multidimensional space. In this algorithm, each particle is assigned a fitness 

value determined by an objective function, with higher values indicating proximity 
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to the target in the search space. Particles possess velocities that guide their 

movement, navigating the problem space by tracking the current optimal particles. 

The position and velocity of each particle in the subsequent iteration are updated 

based on the best particle location and the leader’s position, as described by the 

following equations: 

v(t + 1) = v(t) + C1 ∗ rand(t) ∗ (Pbest(t) − pos(t)) + C2 ∗ rand(t) ∗ (Lpos(t) −

pos(t))            pos(t + 1) = pos(t) + v(t + 1)  
 

In the described algorithm, the current and subsequent positions of a particle 

are denoted by "t" and "t+1," respectively. The particle’s velocity is represented by 

"v", and its position by "pos." The parameters "C₁" and "C₂" are fixed coefficients, 

while "rand" denotes a randomly generated vector applied in each iteration. The 

terms "Pbest" and "Lpos" refer to the particle’s optimal historical position and the 

leader’s position, respectively. If the updated objective function value surpasses 

the previous one, the particle relocates to the new position; otherwise, it remains 

stationary. The algorithm then proceeds to the next iteration, recalculating 

objective functions, and continues this cycle. For the maximization task, the input 

vector "θ" serves as the parameter set, with the log-likelihood of the OOHB-DC 

spike model acting as the objective function to be optimized. 

 

2.4 Questionnaire Design 

In the contingent valuation study, individuals were asked to imagine power outages 

occurring in different seasons and express their highest WTP to prevent them. The 

survey was organized into three distinct segments. The first segment introduced 

participants to the study’s focus and objectives. The second segment collected 

demographic data, such as age, income, gender, education, and related personal 

details. The third segment included questions aimed at gathering WTP responses. 

The study utilized household electricity bills as the payment mechanism, chosen 

for its familiarity and direct relevance to the research topic. After drafting the 

survey and consulting with experts, a preliminary test was conducted one-on-one 

with researchers. This pre-test helped determine appropriate bid ranges and 

quantities through open-ended inquiries. Furthermore, the pre-test ensured that 

questions were straightforward, easily understood, and effectively elicited the 

required data (Brown et al., 2003). 
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3. Results and Discussion 

The results of the study stem from analyzing 800 telephone interviews conducted 

in Kerman, Iran. Data collection occurred in May 2021, with telephone interviews 

chosen due to the ongoing COVID-19 pandemic. As previously noted, the pre-test 

with a focus group established the minimum and maximum bid values for the 

OOHB-DC survey. The bid sets applied in this research were determined based on 

these pre-test outcomes. 

 (50000;150000), (100000;200000), (150000;250000), (200000;300000), 

(250000;350000), (300000;400000), (350000;450000), (400000;500000), 

(450000;550000) and (500000;600000).  

It is worth mentioning the exchange rate When the survey was implemented was 

USD 1 = Rials 250000. 

 

Table 1 presents the responses to the WTP questions from the survey. 

Notably, 45% of participants indicated a WTP of zero. The data reveal that the 

proportion of “yes” responses to the proposed bid amounts generally declines as 

the bid value rises. For instance, as “Yes” or “Yes-Yes” responses reflect a 

preference for paying a higher bid, 14 participants (17%) were willing to pay more 

than 15,000 Rials, whereas only 3 participants (4%) were willing to pay above 

45,000 Rials. 

 

3.1 Estimation Results 

Table 2 displays the outcomes of the OOHB-DC spike model estimation. The bid 

price coefficient is statistically significant at the 1% level and exhibits a negative 

value, suggesting that higher bid amounts reduce the likelihood of a “yes” 

response. According to Table 2, the estimated monthly household WTP to prevent 

power outages is 92,886 Rials (approximately USD 0.37), which is statistically 

significant. The p-value in this table tests the null hypothesis that all parameters 

are collectively zero. 



 
Table 1. Responder's WTP to Suggested Bids 

 

Bid amount 

Higher bid is suggested first Lower bid is suggested first 

Sample size 
Yes 

No 

Yes 

No 

No-Yes 

No 

No-No 

Yes 

No 

Yes 

Yes 

No 

No 

No 

Yes 

50000 150000 6 (8%) 18 (22%) 8 (10%) 8 (10%) 
11 

(14%) 

8 

(10%) 

13 

(16%) 
8 (10%) 80 (100%) 

100000 200000 3 (4%) 11 (14%) 12 (15%) 14 (17%) 
13 

(16%) 

8 

(10%) 

11 

(14%) 
8 (10%) 80 (100%) 

150000 250000 2 (3%) 10 (13%) 15 (18%) 13 (16%) 5 (6%) 6 (8%) 
17 

(21%) 

12 

(15%) 
80 (100%) 

200000 300000 3 (4%) 11 (14%) 16 (20%) 10 (13%) 6 (8%) 4 (5%) 
21 

(25%) 
9 (11%) 80 (100%) 

250000 350000 1 (1%) 6 (8%) 13 (16%) 20 (25%) 7 (9%) 4 (5%) 
19 

(23%) 

10 

(13%) 
80 (100%) 

300000 400000 2 (3%) 6 (8%) 11 (13%) 21 (25%) 3 (4%) 4 (5%) 
18 

(23%) 

15 

(19%) 
80 (100%) 

350000 450000 1 (1%) 1 (1%) 17 (21%) 21 (26%) 1 (1%) 2 (3%) 
24 

(31%) 

13 

(16%) 
80 (100%) 

400000 500000 0 (0%) 1 (1%) 19 (24%) 20 (25%) 1 (1%) 0 (0%) 
26 

(33%) 

13 

(16%) 
80 (100%) 

450000 550000 0 (0%) 0 (0%) 18 (23%) 22 (27%) 0 (0%) 0 (0%) 
28 

(35%) 

12 

(15%) 
80 (100%) 

500000 600000 0 (0%) 0 (0%) 26 (32%) 14 (18%) 1 (1%) 0 (0%) 
21 

(26%) 

18 

(23%) 
80 (100%) 

Total 
18 

(2%) 
64 (8%) 

155 

(17%) 

163 

(23%) 
48 (6%) 

36 

(5%) 

198 

(24%) 

118 

(15%) 
800 (100%) 

 

Source: Research finding. 

Note: * The unit is Rials. ** The numbers in parentheses beside the number of responses are the percentage of sample size. 

 

Table 2. Estimation Results of the Spike Model 

Variables Coefficient Estimation  (t-value) 

Constant 0.008 (-8.45) 

Bid amount -76.37 (-86.13) 

Spike 0.99 

Mean WTP 92886 Rials 

95% confidence interval 81644 to 104127 Rials 

99% confidence interval 80128 to 105643 Rials 

Log-likelihood -15237.26 

Wald statistics (p-value) 341.12 (0.000) 

Number of observations 800 
 

Source: Research finding. 

 

 



 

Table 3. Definitions and Sample Statistics of the Variables 

Variables Definitions Mean Standard Deviation 

AGE 

Dummy for the average of family age being larger than 

forty. 

(1 = Yes; 0 = No) 

0.37 0.512 

INCOME 
Interviewee’s households’ income per month (unit: 

million Rials) 
60.3 1.84 

HOUSE SIZE 

Dummy for the interviewee’s house size being bigger 

than 200 m2 

(1 = yes ; 0 = no) 

0.72 0.48 

FAMILY SIZE Number of the interviewee’s family members 3.56 1.23 

EDUCATION 
Dummy for average educational level of the family in 

years being larger than twelve (1 = Yes; 0 = No) 
0.58 0.53 

OUTAGE EXPERIENCE 

Dummy for the interviewee’s having 

experienced power outages 

(1 = yes ; 0 = no) 

0.34 0.49 

DAMAGE AWARENESS 

Degree of the interviewee’s awareness of the damage 

caused by power outages 

(from 1 to3) 

1.62 0.76 

Source: Research finding. 

 

Table 4. Estimation Results of the Spike Model with Covariates 

Variables Coefficient Estimation  (t-value) 

Constant -0.004 (-4.25) 

Bid amount -43.56 (-21.5) 

Spike 0.85 

Age -0.0013 

Income 0.145 * 

House size -0.253 * 

Family size 0.057 

Education 0.024 * 

Outage experience 0.126 

Damage awareness 0.281 * 

Log-likelihood -13568.32 

Wald statistics (p-value) 326.56 (0.000) 

Number of observations 800 

Source: Research finding. 

Note: * denotes statistical significance at the 5% level. 
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In Kerman, the average monthly electricity bill for households was 1,120,650 

Rials (approximately USD 4.48). Consequently, the mean WTP represents 8.2% 

of this monthly bill. To account for uncertainty in estimating the average WTP, 

confidence intervals (CIs) were employed instead of point estimates. As noted, the 

theoretical validity of contingent valuation models can be assessed by 

incorporating covariates into the estimation. Table 2 outlines the definitions and 

descriptive statistics of the variables included in this study, which comprise the 

dummy variables AGE, INCOME, HOUSE SIZE, FAMILY SIZE, EDUCATION, 

OUTAGE EXPERIENCE, and DAMAGE AWARENESS. 

Table 4 presents the outcomes of the model estimation incorporating 

covariates. A positive (or negative) coefficient for a given variable indicates that 

higher values of that variable increase (or decrease) the likelihood of a “yes” 

response to the proposed bid amount. For instance, greater awareness of the 

damages resulting from power outages positively influences the acceptance of the 

bid price. Additionally, the coefficient signs reveal that individuals with larger 

families, higher educational attainment, greater household income, or prior 

experience with outages are more inclined to agree to a specific bid. Conversely, 

those residing in larger homes are less likely to accept the bid, likely due to their 

already substantial electricity expenses. 

The estimation results in Table 4 reveal that the coefficients for INCOME, 

HOUSE SIZE, EDUCATION, and DAMAGE AWARENESS are statistically 

significant at the 5% level, indicating their influence on the probability of agreeing 

to the proposed bid. In contrast, the coefficients for AGE, FAMILY SIZE, and 

OUTAGE EXPERIENCE are not statistically significant, suggesting these factors 

do not substantially affect the likelihood of a “yes” response to the bid. In 2021, 

Kerman was home to an estimated 872,359 households. Multiplying this number 

by the average monthly WTP per household (92,886 Rials, as noted earlier) and 

extending it over 12 months yields an annual WTP of approximately 972 billion 

Rials (equivalent to USD 3.89 million). This figure represents the yearly economic 

value of preventing power outages in Kerman’s residential sector. It should be 

noted that differences in study objectives, methods, and regional contexts 

complicate direct comparisons with other research. Nonetheless, the findings of 

this study appear generally consistent with earlier work. For example, Ozbafli and 

Jenkins (2015) found that the average household WTP to avoid power outages was 

13.8% of their monthly electricity bill, a result that aligns closely with the present 

study’s outcomes. 
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4. Conclusion 

Power outages, though unavoidable, impact various sectors reliant on electricity. 

This study explored households’ WTP to avoid such disruptions. The contingent 

valuation (CV) approach, commonly used for valuing non-market goods, was 

employed. Among CV techniques, the OOHB-DC method, known for its statistical 

efficiency, was selected and paired with a spike model to address zero WTP 

responses. The survey, conducted in May 2021, involved 800 participants in 

Kerman, Iran. Findings indicate that 45% of respondents expressed no WTP. The 

OOHB-DC spike model estimated a mean monthly WTP of 92,886 Rials 

(approximately USD 0.37) per household, equivalent to 8.2% of the average 

monthly electricity bill. Based on this, the total annual WTP for Kerman’s 

households in 2021 was calculated at 972 billion Rials (roughly USD 3.89 million). 

Additionally, socioeconomic covariates were integrated into the model to examine 

their influence on WTP responses. 
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