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Abstract

In recent years, stocks become the most preferred asset by Indonesian investors. Besides
offering large profits, stock investment also has a risk factor that can occur at any time.
One way to minimize risk is to form a stock portfolio. This paper aims to measure the
upper bounds of the portfolio loss risk formed by several single assets that are mutually
dependent. The upper bound value is chosen because the exact value of portfolio loss risk
is difficult to obtained by Convolution or Panjer Recursion methods. The main analysis of
this research is formed the upper bounds of stock portfolio investment risk using VaR with
Cornish Fisher Expansion aproach by utilized comonotonicity and convex order
properties. The portofolio contains of 3 single asset (ARTO.JK, ITMG.JK, and MIKA.JK)
which collected from IDX Indonesia from 10/25/21 to 10/21/22. The novelty of this
research is combined comonotonicity and convex order properties with VaR-CFE to get
upper bounds of portolio risk predicition. The result show that at 95% significance level
and 1-day holding period, the upper bounds of VaR-CFE prediction for the portfolio is -
0.1394. The social impact of this research can be a benchmark to get accurate risk
prediction of their portfolio asset.

Keywords: Comonotonicity, Convex Order, Portfolio, Risk, Value at Risk-Cornis Fisher
Expansion.

JEL Classification: G11, G32.

1. Introduction
Investment, as economic activities of Indonesian having various backgrounds
(Fernandez et al., 2020), has been chosen to meet their needs and prepare for a
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better life in the future (Maruddani and Trimono, 2021). According to (Ridha and
Budi, 2020), apart from being able to improve people's living standards, investment
activities can also encourage national economic growth by increasing the GDP
value. Murti and Sahara (2019) stated that countries with a favorable investment
climate tend to have better economic growth than countries with a stagnant
investment climate.

Financial assets traded on the IDX Indonesia including stocks, options,
futures, mutual funds, and bonds (Tarno et al., 2020). According to the Indonesian
Securities Custodian (KSEI), during 2017-2022, there was a significant increase in
the number of official investors registered with IDX Indonesia (KSEI Indonesia.,
2022a). In 2017, the number of registered investors was 1,000,289 (KSEI
Indonesia, 2017), then in November 2022, it rise to 10,000,628 (KSEI, Indonesia,
2022b), or increased by 999.77%. This trend shows the increasing public interest
to invest in financial assets. Stocks are the assets most in demand by investors. As
of November 2022, 4,323,643 of 10,000,628 investors in IDX Indonesia were
stock investors (KSEI Indonesia., 2017).

In order to improve the performance of each company and provide a
reference for potential investors, IDX Indonesia releases a list of stocks of those
categorized as blue-chip. According to (Maruddani and Trimono, 2021), blue-chip
stocks are the most recommended stocks for investors because they provide stable
profits. Jagati (2019) suggested that beginner and middle-class investors with
investment funds between IDR 10 million and 100 million choose blue chip stocks,
as they have a stable performance and high selling power. Thus, if investors want
to resell their own stocks, finding potential buyers will not be difficult.

According to Murata and Hamori (2021), stock investment also has a risk
factor for losses that can occur at any time apart from offering large and relatively
fast profits. In stock trading activities, stock prices often experience fluctuations
caused by various factors. Therefore, investors must choose the right investment
strategy to maximize profit with the possible minimum risk (Avramov et al., 2013).
One way to minimize risk in stock investment is to diversify. The diversification
process involves forming an efficient stock portfolio with minimum risk.
According to Radovi¢, Raduki¢ and Njegomir (2018), an efficient portfolio can
produce optimal profit levels with the lowest loss risk.

However, the formation of a portfolio is only to minimize risk, not to
eliminate it (Zanfelicce and Rabechini Jr, 2021). Consequently, investors need to
know the estimated limit value of losses that may occur to maintain investment
stability and prevent investments from bankruptcy. Meanwhile, according to
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(Trimono et al., 2019), predicting the loss risk can be done using the VaR. VaR
predicts an asset's maximum loss value under normal market conditions at a certain
confidence level and period. In measuring portfolio risk using VaR, the distribution
function of the portfolio is needed (Tarno et al., 2022a). However, it is difficult to
determine the joint distribution function of two independent random variables
(Jakobsons et al., 2016). Therefore, an alternative to calculating the estimated risk
value of a stock portfolio in which its single assets are not mutually exclusive is
calculating the upper bound of the portfolio risk value without using the joint
distribution function (Xing and Li, 2018). Furthermore, the value of the upper
bound for the loss risk obtained can be used as a reference by investors to prepare
actions and strategies that must be taken if one day the risk occurs (ARAI, 2017).

The aim of this study was to establish an upper bound on the loss risk in a
blue-chip stock portfolio at IDX Indonesia with the single stocks making up the
portfolio that is not mutually dependent (mutually dependent). The upper bound
model was developed by utilizing the komonotonic and convex order
characteristics of the single stock returns that make up the portfolio. There were
two novelties offered in this study. The first was using the VaR with Cornish Fisher
Expansion (CFE) approach to calculate the value of the upper bound of losses on
a stock portfolio. In previous research on determining VaR as the upper bounds of
portfolio risk (i.e., Bernard et al., 2017; Ansari and Rischendorf, 2020), there was
no explanation of the construction of the VaR model using the CFE approach. The
next novelty was the involvement of three mutually dependent single assets with a
negative correlation as portfolio constituent variables. Some previous research on
this topic used two variables for the numerical simulation; these studies include
Jakobson et al. (2015) and Maggioni and Pflug (2019).

2. Literature review

In determining the upper bound of loss risk for the IDX Indonesia blue chip stock
investment portfolio, this study referred to several relevant similar studies to obtain
optimal research results. Several previous studies related to risk analysis of stock
investment portfolios include; Hadiyoso, Firdaus and Sasongko (2016) used the
single index model to develop an optimal portfolio of 43 Islamic stocks at IDX. In
a numerical simulation, using historical price data from /05/12/11 to 07/04/14, the
result showed that the most significant proportion of the portfolio is MKPI.JK with
value of 11.32%, while the smallest one is KOIN.JK (0.05%). The stock that have
a large proportion of the formation of the portfolio (more than 5%) primarily stocks
from the trade, property, and basic chemical industry sectors. However, an analysis
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of the loss risk was not available, considering that the risk was also an essential
indicator in the portfolio. Thus, it needed to be further studied.

Sumaji, Hsu and Salim (2017) analyzed market risk values using VaR on
nine manufacturing company stocks listed on IDX LQ-45. The result showed that
the stock portfolio was formed based on the Markowitz method without regard to
the independence between stocks. The analysis showed that the VaR model with
the variance-covariance approach is the best model for measuring the maximum
potential loss of a manufacturing stock portfolio. Salsabila and Hasnawati (2018)
investigated the value of portfolio risk in the Indonesian Companies Listed on the
LQA45 Index for the 2013-2016 period. They constructed the portfolio based on the
Markowitz method without examining the dependencies of every single asset
making up the portfolio. Then, the portfolio formed was used as a reference for
predicting the value of the loss risk.

Next, Pasaribu (2019) explored the amount of loss risk in a portfolio
composed of liquid stocks on the Indonesian stock market. However, this study did
not specifically explain the procedure for compiling a stock portfolio; they used a
portfolio determined in another study and then analyzed the value of the loss risk
using VaR. Juniar et al. (2020) formation of an optimal portfolio with the
Markowitz model and analyzed the loss risk based on VaR for 10 Sharia stocks in
the Jakarta Islamic Index. In this study, there was no dependency test on each stock,
so there was no conclusion about whether single asset were mutually dependent or
mutually independent. Loss risk analysis of Portfolio formation was carried out
using VaR-MCS. The results showed that for a single asset, at a 99% confidence
level and a one-day holding period, the most significant loss occurred in
ADRO.JK, which was -7.24%. VaR MCS predicted a loss of -4.32% in the stock
portfolio with the same confidence level and holding period. The result suggested
that the portfolio can minimize the value of the loss risk.

KSEI Indonesia. (2022b) reported that banking stocks are among the most
in demand by investors. Referring to this fact, Sholikhah, Sudarto and Shaferi,
(2020) analyzed banking stocks by forming a portfolio to minimize the loss risk.
Based on the stock price of 10 banks in Indonesia in March - July 2020, the MVEP
method resulted that stocks with the highest proportion were BBNILJK (20.23%)
and stocks with the lowest proportion were BBHI.JK (1.32%). This study did not
include the process of preparing a portfolio, so it was likely that the results obtained
needed to be more accurate. Research related to Indonesian banking stocks was
also conducted by Irsan, Priscilla and Siswanto (2022). They particularly examined
the risk value using the VAR model with a historical simulation and variance-
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covariance approach. The portfolio weight was determined using the MVEP
Method. The drawback of this study was not to test the dependence on three
banking stock prices that were the research sample. The results showed that in the
95% confidence level and holding period of one day, the results of the prediction
of losses by holding variance-covariance and historical simulation were -0.02790
and 0. 01978.

According to Embrechts et al. (2013), to measure the loss risk in a stock
portfolio, a distribution function of portfolio return is needed, where the
distribution function of portfolio return is a joint distribution function of single
asset return. If the return price of a single asset is mutually independent, then
determining the distribution function of portfolio returns is easy to determine
(Bernard et al., 2018). Nevertheless, the distribution function of portfolio returns
will require more work to determine if single-asset returns are mutually dependent
(Bignozzi et al., 2015). To solve this problem, Pucetti (2013) proposed an
alternative to calculating the upper bound of portfolio loss risk without using the
portfolio distribution function. Chen et al. (2022) guaranteed that the upper bound
obtained will always be more significant or at least the same as the actual loss risk.

Based on previous research, this research predicted the loss risk in a stock
portfolio composed of 3 stock assets that were not mutually exclusive. The risk
measure used was Value-at-Risk (VaR) with the Cornish Fisher Expansion (CFE)
approach. The stocks used in this study were three blue chip stocks at IDX
Indonesia, which were not mutually exclusive with negative correlation values.
This proposition was based on the findings of Achudume and Ugbebor (2021).
They suggested that a portfolio will be optimal if every single asset composed of
it is negatively correlated so that if one stock suffers a loss, other stocks can still
cover the loss.

3. Data and Methods

3.1 Data Description

In this study, an analysis of the upper bound of VaR on the stock portfolio used the
stock data of Blue-chip companies at IDX Indonesia in 2022, which were Jago
Bank (ARTO.JK), Indo Tambangraya Megah (IMTG.JK), and Mitra Keluarga
Karyasehat (MIKA.JK). They were selected following the concept of forming a
portfolio put forward by (Tarno et al., 2020) and (Tarno et al., 2022b) that the main
objective of forming a portfolio was to optimize the return value by reducing the
loss risk to as small as possible. In achieving the goal, the portfolio's single asset
returns had to be negatively correlated. So, one day, one of the assets suffered a
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loss. In that case, there was still a significant possibility that the other asset would
record a profit.

3.2 Convex-order

Convex order is one of the methods used to compare two random variables with
identical and finite expected values. The following is the convex-order definition
for a single random variable, according to (Lu et al., 2018).

Definition 1. [Convex-order] Let X, and X, be two random variables, and g is a

convex function such that the values E[g( X, )] and E[g( X,)] are defined. X, is
said to be smaller than X, in convex-order ( X; <., X,) if E[g( X,)] < E[g( X,)].

According to Florea et al. (2015), Convex-orders are closely related to stop-loss
orders; this can be seen from a bi-implicated relationship between the two. The
definition of stop-loss-order for two single random variables, according to
Bouhadjar et al. (2016), is as follows:

Definition 2. Suppose there are two random variables, X, and X,. X, is said to

be smaller than X, in the stop-loss-order ( X; <q X,) if for every constant K holds:
E[(X,—K), <E(X,-K), ] and E[X,]=E[X,] (1)

Referring to Jain and Gupta (2018), apart from the bi-implication
relationship, several relationships between convex orders and stop-loss orders are
as follows: (1) if X, <. X,,then E[ X, ]=E[ X, ]; (i) If X, <, X, then X, <y

X,; (iii) X, <v X, then X, <0 X,.

3.3 Commonotonic Random Variables
Suppose we have a set X which contains some N random variables, namely, X1, X2,

..., Xy .4 1s acommonotonic set if one of the following equivalent statements is

fulfilled (Gao and Zhao, 2017): (1) X has commonotonic-support. A commonotonic
set A € RN is called commonotonic-support of X if P[X € A] = 1. (2) For every x

= (X1, X3, ., Xp ), then Fx(X) = min {Fx1(x1)’ Feo, (%), Fy, (Xn)} (3) For random
variable U ~ Uniform (0,1), valid X similar in distribution to

(FX’i(U), F;;(U),...,FgNl(U)); (4) There is a random variable Z and an

undecreasing function ¢;such that X is similar in distribution to
(¢1(Z)!¢2(Z)1""¢N(Z))'
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According to Kumar and Srinivasan (2014), one of the characteristics of
the random variable is having a distribution function that plays a vital role in
predicting risk values. Suppose X is a single random variable with the Fy (+)
distribution function. Based on Cheung and Vanduffel (2013), for each random
variable X, there is X© which is the Commonotonic Random Variable of X, and
there is ¢ which is a non-degenerate function, and random variable Z so that X© is

similar in the distribution of F'(U). As U is distributed Uniformly (0,1), in the

end, the values of F, '(U) are the values of the random variable X itself. As a result,

X is similar in distribution to X, and the distribution function of X* is the same as
the distribution function X, namely Fx(-) (Ortega-Jiménez et al., 2021).

The Upper Bound in Convex-Order for Stock Portfolio

According to Jakobsons and Vanduftel (2015), a convex-order bound applies for
each random variable X, which is a single asset return, and S, which is a portfolio
return of N stock assets. Furthermore, the upper bound in the convex order will be
a reference for measuring the bound of the loss risk for the Sy. portfolio. For X1,

X2, ..., Xn, which are returns from some N stocks, Sy is obtained through the
following equation (R. Zhou and Palomar, 2021):
Sy =X+ X, +..4+ X (2)

Bernard et al. (2017) state that the upper bounds in the convex-order sequence for
X and Sx are X€ and Sy . X€ is the commonotonic random variable of X, while S§

is the commonotonic random variable of Sy. So, mathematically, it can be written
as:

Sy <e Sy 3)
Inequality (3) implies SS also being the upper bound of the stop-loss order
for Sy, so it can be written as follows:
Sy <q Sy (4)
According to Haugh et al. (2015), since every X, is guaranteed to have X
as a boundary in the convex-order, then S can be obtained by adding up each
X value, namely:

Sy = X{ + X5 +..+ X (5)
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Then, the inverse distribution function for from Sﬁ at point o € (0,1), i.e.
1 . . . .
Fsﬁ (a) is given by the following theorem:

Theorem 1. (Sun X. et al., 2018) inverse distribution function for from S§ at point
a € (0,1), defined as:

@)= YR (@) (6)

The Upper Bound of VaR on the Stock Portfolio

In stock portfolios, a risk measure can be used to predict the loss risk that might
occur in the future (Zhou et al., 2018). In this study, the risk measure used is VaR-
CFE. Theoretically, VaR is the maximum risk value that can still be tolerated at a
confidence level of 1-a, a € (0,1) with a specific holding period. Suppose S; is a
random variable representing the portfolio return of 3 stocks, VaR for S; at a
confidence level of (1 — a) is defined as (Alshamali et al., 2021):

VaR_,(S,) =Fg'(a) (7)
that is, st (-) is the inverse of the distribution function of F (*).
According to Feng, Wachter and Staum (2015), to predict the value of
VaR;_,(S3), a distribution function F () and an inverse distribution function

st (-) are needed. If X1, X> and X3 are single asset returns that makeup mutually

independent portfolio returns, then Fg (-) is relatively easy to determine using the
Convolution or Panjer Recursion method (Cooper et al., 2021). However, if X1, X>
and X3 are mutually dependent, Fg (-) and st () become difficult to determine.

As a result, the VaR model cannot be constructed, and we cannot estimate the loss
risk. To overcome this problem, (Hanbali et al., 2022) introduced another
alternative to predict the loss risk, namely by determining the upper bound value

for VaR,__(S;) . The upper bound of VaR,__ (S;) is given by the following theorem:
Theorem 2. (Dhaene et al., 2014) for every random variable Y and Z, apply:

Y <, ZoVaR,, (Y)<VaR, ,(2) (8)
which applies to every a € (0,1).
In previous section, it has been explained that for each S,, one can construct Sy,
a commonotonic random variable of S,, as well as an upper bound for S; in

convex orders and stop-loss orders. Therefore, based on Theorem 2, it is obtained
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VaR,_,(S;) <VaR,_,(S;) )

So, the upper bound of portfolio loss risk is the VaR value of S§. Then, the
VaR;_,(5%) construct is determined based on the following theorem:
Teorema 3. (Cheung et al.,, 2017) Consider X;,X,, ... Xy as commonotonic
random variable, and suppose:

Sy = X[+ X5+t Xy (10)
Then for every a € (0,1), the additive properties of VaR apply, namely:

VaR,_, (Sy)=VaR,, (X,)+VaR,, (X,)+..+VaR_, (Xy) (11)

For a portfolio composed of 3 single assets, the predicted value of losses using the
VaR method at a confidence level of 1-a will not be greater than the sum of

VaR_,(X,), VaR_,(X,), and VaR_,(X;). Alternatively, if written in the
equation is as follows:
VaR_,(S;)<VaR,_, (Xl) +VaR, _, (X2 ) +VaR,_, (X3) (12)

Cornish Fisher Expansion (CFE) Approach on VaR Method
Amédee-Manesme et al. (2019) argue that if stock returns do not precisely follow
the normal distribution (skewness = 0 and kurtosis = 3), then the results of
calculating VaR with the HS, VC, and MCS approaches will be inefficient. To
overcome this problem, the CFE method can be used as an alternative to
calculating VaR. CFE tends to provide a larger estimate of the VaR value.
However, the VaR estimate will be smaller, especially if the data return has a
positive slope. Specifically, ECF considers skewness and kurtosis values in VaR
calculations (Christoph et al., 2020).

By using the CFE approach, the a-th used for VaR measurements is
expanded by the following formula (Rastegar and Amzajerdi, 2019)

(@) -1)s0q (@) -3, )w() _(2(a.)" 50, )8°()

CFE= (13)
“ 6 24 36
If the kurtosis value is less than 3, then the CFE formula is as follows:
2 3 3
q,) -1)S(X) ((a,) —3a,)K(X) (2(a,) -54, |S*(X)
CFE= qa+(( ) ) +(( ) ) —( (4.) ) (14)

6 24 36
where, CFE is the Cornish-Fisher expansion value; q, is the a-the quantile of

Standard Normal distribution; S(X) is the skewness of stock returns; K(X) is the
kurtosis of stock returns; w(X) is the difference in excess kurtosis values. If the
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initial investment value is Vo and the holding period is t, then the VaR formula with
the CFE approach at (1 — o) confidence level can be calculated as (Westgaard et
al., 2020):

VaRS™E (X) = -V, x (u—CFE o) x+/T (15)
with, u is stock return mean, and o is stock volatility.

Risk Prediction Accuracy with Backtesting Test
The concept of accuracy testing in the backtesting method calculates the violation

ratio (Zhang and Nadarajah, 2018). In the period K,, to period K, (length of the
test window), the violation is symbolized by 7, , which is worth 1 if there is a
violation and O if there is no violation in period k. Rt is the return in period £, and
Adj-Esk is the value of Adj-ES in period k. The number of violations is symbolized
by v; withj= {0, 1}, where v, is the number of 7, which is worth 1 (the number
of days the violation occurred), and Vv, is the number that is worth 0 (the number

of days without a violation).
K

Vi = Z e and vy = Ky —v, (16)

k=Kgy
The violation ratio (VR) is calculated by comparing v, with the expected

number of violations. Where m,, is the probability of the estimated violation, then

vV
VR = 1 (17)

m, x K,
If VR = 1 or VR < 1 then the risk prediction is accurate, meanwhile if VR >
1 then the risk prediction isn’t accurate.

4. Result and Discussion
The historical stock price data that became the sample was from 10/25/21 to

10/21/22. So, with each variable, there will be 246 data. The following is a
descriptive statistical value of historical stock price:

Table 1. Descriptive Statistics of Daily Historical Stock Price

Mean St. dev Min Max Skewness Kurtosis
ARTO.JK 12208.90 3846.02 4680 19000 -0.05798 -1.38039
ITMG.JK 29913.16 7947.07 19100 44175 0.31826 -1.22953

MIKA.JK 2481.88 234.61 2090 3050 0.08202 -1.22934
Soruce: Research finding.




Hersugondo et al. 804

Referring to the standard deviation value, the stock with the highest deviation
from the average value was ITMG.JK. Meanwhile, the stock with the most
homogeneous value and the lowest deviation was MIKA.JK. Similarly, based on
the skewness value, the ITMG.JK and MIKA.JK stock price data tended to
converge at a value smaller than the average because the two stocks had a positive
skewness value. For ARTO.JK, the negative skewness value meant that the stock
price data converged during the observation period at a value greater than the
average. The kurtosis of all assets was less than 0. This state suggested that the
distribution curve was flatter than a normal curve with the same mean and standard
deviation. During the observation period, the three stocks experienced various
price fluctuations. To find out the fluctuation pattern, we present a time series plot
in the following figure:

ARTOJK ITMGIK MIKAJK

Figure 1. Time Series Plots of Daily Historical Stock Price at Observation Period
Soruce: Research finding.

During the observation period, the stocks price experiencing the most
significant price decline were Arto.JK. At the beginning of the period (10/25/21),
the stock price was at the IDR 14,925 level; this value dropped to IDR 5.425 in the
final recording period. Referring to Detik Finance, the main factor causing this
decline was an increase in the benchmark interest rate issued by Bank Indonesia
(Finance Detik, 2022). Unlike Arto.JK, two other stocks price experienced a
significant increase. For MIKA.JK, the highest increase occurred around March -
May 2022. As for ITMG.JK, the increase occurred more slowly from the beginning
to the end of the recording period.

We need historical return values to construct the VaR model on upper-bound
portfolio loss risk prediction. The return value is obtained in this study using the
Log return method. Suppose there are P, and P,_,, which are stock prices in periods
t and ¢-1, then the return value for period ¢ can be obtained through the following
equation:
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R :'”(pij (16)

t-1
Descriptive statistical values for each single asset return are presented in the
following table:

Table 2. Descriptive Statistics of Daily Historical Return

Mean St. dev Min Max Skewness  Kurtosis
ARTO.JK -0.00415 0.03888 -0.07201 0.18055 0.75772 2.11977
ITMG.JK 0.00231  0.02798 -0.07235 0.11790 0.41569 1.49769

MIKA.JK 0.00104  0.02289 -0.07134 0.07232 -0.00222 1.51736
Soruce: Research finding.

During the observation period, the stock that provided the most considerable
average daily profit was ITMG.JK, which was engaged in coal mining. Coal was
one of the largest mining commodities exported by Indonesia, and its price tended
to increase during the observation period. The increased price was due to plans to
lift the ban on coal imported from Australia, increase the capacity of coal rail
transport, and improve logistics conditions because the weather was back to normal
(Kompas, 2021). Furthermore, the stock with the lowest average return was
ARTO.JK (-0.415%). This condition showed the value of the losses recorded by
ARTO.JK during the observation period was more significant than the value of the
profits received. The fall in digital bank stocks, such as ARTO.JK., was caused by
expensive valuations compared to other big banks. Then, the average profitability
of digital bank issuers was still relatively small. The highest profit values were
recorded during the observation period by ARTO.JK, ITMG.JK, and MIKA.JK
was 18.055%, 11.790%, and 7.23%, respectively. Referring to the Skewness value,
ARTO.JK and ITMG.JK returns tended to center on a value that was smaller than
the average; this was because the skewness of both was positive.

In determining the upper bound of the portfolio loss risk, the first
procedure was to determine the portfolio model used. Because our goal was to
determine the upper bound of the portfolio loss risk in general, the portfolio model
we choose was the general model, namely:

SS,t = Rl,t + R2,t + Rs,t (17)
with, S, is the portfolio return in period ¢. R, R,,, and R;, respectively were

the stock returns of ARTO.JK, ITMG.JK, and MIKA.JK in period ¢. Furthermore,
before carrying out the correlation test, we performed a normality test for every
asset return. The purpose of the normality test was related to selecting the best
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correlation test method to be used. If every asset return was normally distributed,
the best correlation test method was Pearson correlation, otherwise, we could use
the Spearman method (Aghnitama et al., 2021). By using o = 5%, the normality
test results using the Kolmogorov-Smirnov test are as follows:

Table 3. Normality Test of Daily Historical Return

KS value Sig Decision
ARTO.JK 0.978 0.294 The data are normally distributed
ITMG.JK 1.207 0.109 The data are normally distributed

MIKA.JK 1.004 0.265 The data are normally distributed

Soruce: Research finding.

Table 3 shows that the value of each single asset return is sig > a; therefore,
we concluded that daily historical returns were normal. Since the data were
normally distributed, the correlation test method chosen was Pearson's correlation.
The Pearson correlation method calculates the correlation value based on the
product moment of each data value on the corresponding variable. The statistical
test values for the Pearson correlation test are given in the following table:

Table 4. Pearson Correlation Test Statistical Test Scores

ARTO.JK ITMG.JK MIKA.JK
r =-0.133 r =-0.126
ARTO.JK -1
" sig = 0.037 sig = -0.049
r —-0.133 r = -0.163
IIMGIK Gy 20,037 r=l sig=0.011
MiKAJK T =126 1 =016 o

sig =0.049 sig=0.011
Soruce: Research finding.

Table 4 shows a significant negative correlation between the three stock
returns; therefore, the stock portfolio formed was ideal based on the rules for
compiling a portfolio according to (Hersugondo et al., 2022). Before determining
the upper bound for S3, we present the value of descriptive statistics for S; to obtain
characteristics and descriptive information before we determined the upper bound
of losses using VaR.
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Table 5. Descriptive Statistics of Portfolio Return
Mean St. dev Min Max Skewness Kurtosis

Portfolio

0.08279 0.04578 -0.11208 0.15504 0.03070 -0.08684
Return

Soruce: Research finding.

Table 5 exhibits that the formation of a portfolio can produce an average
positive return and suggests that during the observation period, the profits obtained
by investors were worth more than the losses received. The most significant loss
value received on portfolio investment was -0.11208. However, this loss's value
was smaller than the maximum profit value of 15,504%. In other words, the
maximum profit earned could still cover the losses incurred. The distribution of
portfolio return data tended to be centered on values below the average; this
condition referred to skewness with a positive value. Furthermore, the most
centered data distribution was in the value interval 0.03421 — 0.07882, with a
frequency of 50 data. Furthermore, the time series plot of stock return is given in
the following figure:

Time Series Plot of Portfolio Return

1026/21 11/26/21 1273021 2422 3/1422 41822 6222 71622 8/922 971322 101722

Figure 3. Time Series Plots of Daily Portfolio Return at Observation Period
Soruce: Research finding.

Figure 3 shows that the portfolio return is stationary during the observation
period. It means there are no extreme jumps in value or outlier data. The highest
profit value was recorded on 05/19/22, while the biggest loss occurred on 02/12/22.
The previous chapter explained that the upper bound for portfolio losses using the
VaR risk measure was the sum of the VaR values of each single asset return. The
advantage of this method was that we did not need to construct a portfolio return
distribution function, so the processing steps became efficient. Theoretically, the
results obtained are guaranteed to be accurate.
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The Upper Bound of Portfolio Loss Risk Using VaR with Cornish-Fisher Expansion (CFE)
For example, P, is a portfolio composed of ARTO.JK, ITMG.JK, and MIKA.JK

stocks and S, is a portfolio return. In the #-period, the upper bound of the VaR of
5t at each confidence level (1 — a) and the holding period w is obtained using the

following formula:
VaR(, . (Sy) =VaR:,  (R) +VaR(:  (R,) +VaR(: (R,) (18)
with VaRng)VW(Rl), VaRng)’W(RZ), and VaR:™ (R, respectively the VaR value

(1-«),W

of ARTO.JK, ITMG.JK, and MIKA.JK. VaR™" (S,) would be the upper bound

(1-«),w
value of the VaR portfolio P3. The following parameters will be used to calculate
the upper bound of VaR using the CFE approach:

Table 6. VaR-CFE Parameters for ARTO.JK, ITMG.JK, and MIKA.JK

Value
Parameters
ARTO.JK ITMG.JK MIKA.JK

Excess kurtosis 0 0 0

Sig level (1-a) 95% & 99% 95% & 99% 95% & 99%
Cornish-Fisher a=1% -2.868 -2.713 -2.711
Expansion value (CFE e
Value) a=5% -1.619 -1.632 -1.378

Holding period (day) 1,3,and 5 1,3,and 5 1,3,and 5

Soruce: Research finding.

Since the observation period ended on 10/21/22, this date was the reference
in determining risk predictions for the following periods. By using equation (23),
the VaR- CFE value for a single asset at several confidence levels and holding
periods is as follows:

Tabel 7. VaR- CFE for a Single Asset at 95% Confidence Level

Holding period

1 day 3 days 5 days
ARTO.JK -0.0588 -0.1018 -0.1315
ITMG.JK -0.0480 -0.0831 -0.1073
MIKA.JK -0.0326 -0.0564 -0.0729

Soruce: Research finding.
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At the 95% confidence level, the single asset with the most significant loss
risk was ARTO.JK, during the 1-day holding period, the VaR- CFE prediction was
-0.0588, meaning that the value of the loss risk that would occur for one period
after 10/21/22 was 5.88 % of the total funds invested. If an investor had IDR 100
million in funds, then within one day after that, the maximum possible loss that the
investor would experience was IDR 5.88 million. Then, for a holding period of 3
and 5 days, the predicted loss of VaR- CFE for ARTO.JK was 10.18% and 13.15%,
respectively. Furthermore, the single asset with the smallest loss was MIKA.JK.
This company engaged in the health sector had a predicted loss of 3.26% for a 1-
day holding period. Then, for the 3 and 5-day holding periods, the predicted loss
risk was 5.64% and 7.29%. Furthermore, VaR- CFE predictions for the 99%
confidence level can be seen in the following table:

Tabel 8. VaR- CFE for a Single Asset at 99% Confidence Level

Holding period

1 day 3 days 5 days
ARTO.JK -0.1074 -0.1860 -0.2401
ITMG.JK -0.0782 -0.1355 -0.1749
MIKA.JK -0.0631 -0.1093 -0.1411

Soruce: Research finding.

At the 99% confidence level, the stock with the highest loss prediction value
and the slightest loss value was the same as at the 95% confidence level. ARTO.JK
was the stock with the highest prediction of loss, and MIKA.JK was the stock with
the minor prediction of loss. After obtaining the loss risk value of a single asset,
then we used these results to obtain the upper bound of the VaR-ECF value for a
stock portfolio made up of 3 single assets. The upper bound of the VaR-ECF
portfolio was obtained by adding up the value of the loss risk of a single asset at
the corresponding confidence level and holding period. The following are the
upper bound of the portfolio VaR-ECF value at the 95% and 99% confidence
levels:

Tabel 9. The Upper bound of Portfolio Loss Risk Using VaR- CFE

Holding period

Confidence level

1 day 3 days 5 days
95% -0.1394 -0.2414 -0.3116
99% -0.2487 -0.4307 -0.5560

Soruce: Research finding.
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Table 9 shows that, at a 95% confidence level and 1 day holding period, the
value of the loss investors received from the P, portfolio for the next period from

10/21/22 would not exceed 13.94%. For a 99% confidence level, the upper bound
value obtained was 24.87%. As a validation, we constructed a P, loss prediction

value to ensure that at the appropriate level of confidence, the predicted loss risk
value did not exceed the upper bound value. For the 95% and 99% confidence
levels, the VaR-ECF values for the stock portfolio were -0.0731 and -0.1112. This
predicted value was smaller than the upper bound value, so the upper bound value
obtained was valid for measuring the value of the loss risk in the stock portfolio.

Backtesting Test

In the risk prediction, the risk prediction results could be interpreted as an estimate
of the losses that would occur; in other words, the risk value that would occur in
these stocks was around the predicted value obtained. Since after calculating the
upper bound of VaR, backtesting was carried out; thus, before making predictions,

we first determined the estimation window (K. ) and test window (K ). The

lengths of both were set equal to the in-sample and out-sample periods. For more
details, the distribution of the estimation window and the test window can be seen
in Table 10.

Table 10. The Distribution of the Estimation Window and Test Window

Estimation Window Test Window
k k+Kg-1 Adj-ES (k + K)
1 (10/25/21) 08/27/22 Upper bound of VaR for 08/29/22
2 (10/26/21) (08/29/22) Upper bound of VaR for 08/30/22
3 (10/27/21) (08/30/22) Upper bound of VaR for 08/31/22
39 (8/29/22) (10/19/22) Upper bound of VaR for 10/20/22
40 (8/30/22) (10/20/22) Upper bound of VaR for 10/21/22

Soruce: Research finding.

At the 95% significance level (a = 5%) and one day holding period, the
results of the prediction of the risk of loss in the test window are as follows:
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Table 11. The Upper Bound of VaR-CFE at Test Window Periods

Period Actual Portfolio Return Upper bound of VaR
08/29/22 -0.02992 -0.17401
08/30/22 0.02174 -0.16181
08/31/22 0.04209 -0.16412
10/20/22 -0.00439 -0.16321
10/21/22 0.03465 -0.1394

Soruce: Research finding.

The main concept of the backtesting test is to measure the value of the
Violation Ratio, calculated based on the values of m, and 7. The calculation of
the Adj-ES violation ratio at the 95% confidence level was simulated on several
values of estimated violation probability, namely 0.1%, 0.5%, 1%, 2%, 3%, 4%

and 5%. With the help of software R 3.3.2, the obtained value of the ratio of
violations is as follows:

Table 12. Violation Ratio Value on Several m, Value

mo Violation Ratio mo Violation Ratio
0.1% 0.002 2% 0.01
0.5% 0.003 3% 0

1% 0.007 5% 0

Soruce: Research finding.

In estimating the upper bound of loss risk using VaR on stock portfolio with
a 95% confidence level, the VaR could provide accurate prediction results for each
violation probability VR value < 1. The value of VaR could be interpreted as
predicting losses in the corresponding period. Then, the predicted upper bound of
VaR-CFE was applied to the following 16 periods after 10/21/22.
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Table 13. The Predicted Upper Bound of VaR-CFE

Period Predict Period Predict
10/22/22 -0.1421 10/30/22 -0.1566
10/23/22 -0.1467 10/31/22 -0.1533
10/24/22 -0.1527 11/1/22 -0.1520
10/25/22 -0.1522 11/2/22 -0.1713
10/26/22 -0.1387 11/3/22 -0.1515
10/27/22 -0.1417 11/4/22 -0.1454
10/28/22 -0.1442 11/5/22 -0.1662
10/29/22 -0.1412 11/6/22 -0.1398

Soruce: Research finding.

The highest estimated loss occurred on 11/2/22, which was -0.1713. Thus,
investors needed to prepare a good risk management strategy so that the losses did
not have a destructive impact on the investment being carried out. During this
period, investors were not advised to sell their assets on the Indonesia Stock
Exchange because when there was a significant loss, the asset price decreases,
increasing the loss if investors sell their assets.

5. Conclussion

Based on the analysis in section 4, we conclude that the three single assets we have
chosen to compile the portfolio follow the optimal portfolio rule because the
correlation between single assets is negative. Based on the comotonic properties,
the portfolio loss risk ceiling is equal to the sum of the loss values of every single
asset. In this study, the loss risk is measured using the VaR-CFE model. The stock
with the highest loss value for a single asset is ARTO.JK. At the 95% confidence
level and one day holding period, the predicted value of ARTO.JK's stock price
loss for the period after 10/21/22 is -0.0588. Furthermore, the single asset with the
smallest predicted loss value is MIKA.JK operates in the health sector. For a 95%
confidence level and a one-day holding period, the loss risk for this stock is -
0.0326. Finally, the upper bound for portfolio loss risk at the 95% confidence level
is -0.1394. After validation, the results show that the VaR-ECF value of the stock
portfolio at the 95% confidence level and one-day holding period is -0.0731; this
value is proven to be lower than the upper bound predicted value.
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