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Abstract 

In recent years, stocks become the most preferred asset by Indonesian investors. Besides 

offering large profits, stock investment also has a risk factor that can occur at any time. 

One way to minimize risk is to form a stock portfolio. This paper aims to measure the 

upper bounds of the portfolio loss risk formed by several single assets that are mutually 

dependent. The upper bound value is chosen because the exact value of portfolio loss risk 

is difficult to obtained by Convolution or Panjer Recursion methods. The main analysis of 

this research is formed the upper bounds of stock portfolio investment risk using VaR with 

Cornish Fisher Expansion aproach by utilized comonotonicity and convex order 

properties. The portofolio contains of 3 single asset (ARTO.JK, ITMG.JK, and MIKA.JK) 

which collected from IDX Indonesia from 10/25/21 to 10/21/22. The novelty of this 

research is combined comonotonicity and convex order properties with VaR-CFE to get 

upper bounds of portolio risk predicition. The result show that at 95% significance level 

and 1-day holding period, the upper bounds of VaR-CFE prediction for the portfolio is -

0.1394. The social impact of this research can be a benchmark to get accurate risk 

prediction of their portfolio asset. 

Keywords: Comonotonicity, Convex Order, Portfolio, Risk, Value at Risk-Cornis Fisher 

Expansion.  

JEL Classification: G11, G32. 

 

1. Introduction 

Investment, as economic activities of Indonesian having various backgrounds 

(Fernandez et al., 2020), has been chosen to meet their needs and prepare for a 
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better life in the future (Maruddani and Trimono, 2021). According to (Ridha and 

Budi, 2020), apart from being able to improve people's living standards, investment 

activities can also encourage national economic growth by increasing the GDP 

value. Murti and Sahara (2019) stated that countries with a favorable investment 

climate tend to have better economic growth than countries with a stagnant 

investment climate. 

Financial assets traded on the IDX Indonesia including stocks, options, 

futures, mutual funds, and bonds (Tarno et al., 2020). According to the Indonesian 

Securities Custodian (KSEI), during 2017-2022, there was a significant increase in 

the number of official investors registered with IDX Indonesia (KSEI Indonesia., 

2022a). In 2017, the number of registered investors was 1,000,289 (KSEI 

Indonesia, 2017), then in November 2022, it rise to 10,000,628 (KSEI, Indonesia, 

2022b), or increased by 999.77%. This trend shows the increasing public interest 

to invest in financial assets. Stocks are the assets most in demand by investors. As 

of November 2022, 4,323,643 of 10,000,628 investors in IDX Indonesia were 

stock investors (KSEI Indonesia., 2017). 

In order to improve the performance of each company and provide a 

reference for potential investors, IDX Indonesia releases a list of stocks of those 

categorized as blue-chip. According to (Maruddani and Trimono, 2021), blue-chip 

stocks are the most recommended stocks for investors because they provide stable 

profits. Jagati (2019) suggested that beginner and middle-class investors with 

investment funds between IDR 10 million and 100 million choose blue chip stocks, 

as they have a stable performance and high selling power. Thus, if investors want 

to resell their own stocks, finding potential buyers will not be difficult.  

According to Murata and Hamori (2021), stock investment also has a risk 

factor for losses that can occur at any time apart from offering large and relatively 

fast profits. In stock trading activities, stock prices often experience fluctuations 

caused by various factors. Therefore, investors must choose the right investment 

strategy to maximize profit with the possible minimum risk (Avramov et al., 2013). 

One way to minimize risk in stock investment is to diversify. The diversification 

process involves forming an efficient stock portfolio with minimum risk. 

According to Radović, Radukić and Njegomir (2018), an efficient portfolio can 

produce optimal profit levels with the lowest loss risk.  

However, the formation of a portfolio is only to minimize risk, not to 

eliminate it (Zanfelicce and Rabechini Jr, 2021). Consequently, investors need to 

know the estimated limit value of losses that may occur to maintain investment 

stability and prevent investments from bankruptcy. Meanwhile, according to 
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(Trimono et al., 2019), predicting the loss risk can be done using the VaR. VaR 

predicts an asset's maximum loss value under normal market conditions at a certain 

confidence level and period. In measuring portfolio risk using VaR, the distribution 

function of the portfolio is needed (Tarno et al., 2022a). However, it is difficult to 

determine the joint distribution function of two independent random variables 

(Jakobsons et al., 2016). Therefore, an alternative to calculating the estimated risk 

value of a stock portfolio in which its single assets are not mutually exclusive is 

calculating the upper bound of the portfolio risk value without using the joint 

distribution function (Xing and Li, 2018). Furthermore, the value of the upper 

bound for the loss risk obtained can be used as a reference by investors to prepare 

actions and strategies that must be taken if one day the risk occurs (ARAI, 2017).   

The aim of this study was to establish an upper bound on the loss risk in a 

blue-chip stock portfolio at IDX Indonesia with the single stocks making up the 

portfolio that is not mutually dependent (mutually dependent). The upper bound 

model was developed by utilizing the komonotonic and convex order 

characteristics of the single stock returns that make up the portfolio. There were 

two novelties offered in this study. The first was using the VaR with Cornish Fisher 

Expansion (CFE) approach to calculate the value of the upper bound of losses on 

a stock portfolio. In previous research on determining VaR as the upper bounds of 

portfolio risk (i.e., Bernard et al., 2017; Ansari and Rüschendorf, 2020), there was 

no explanation of the construction of the VaR model using the CFE approach. The 

next novelty was the involvement of three mutually dependent single assets with a 

negative correlation as portfolio constituent variables. Some previous research on 

this topic used two variables for the numerical simulation; these studies include 

Jakobson et al. (2015) and Maggioni and Pflug (2019). 

 

2. Literature review 

In determining the upper bound of loss risk for the IDX Indonesia blue chip stock 

investment portfolio, this study referred to several relevant similar studies to obtain 

optimal research results. Several previous studies related to risk analysis of stock 

investment portfolios include; Hadiyoso, Firdaus and Sasongko (2016) used the 

single index model to develop an optimal portfolio of 43 Islamic stocks at IDX. In 

a numerical simulation, using historical price data from /05/12/11 to 07/04/14, the 

result showed that the most significant proportion of the portfolio is MKPI.JK with 

value of 11.32%, while the smallest one is KOIN.JK (0.05%). The stock that have 

a large proportion of the formation of the portfolio (more than 5%) primarily stocks 

from the trade, property, and basic chemical industry sectors. However, an analysis 
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of the loss risk was not available, considering that the risk was also an essential 

indicator in the portfolio. Thus, it needed to be further studied. 

Sumaji, Hsu and Salim (2017) analyzed market risk values using VaR on 

nine manufacturing company stocks listed on IDX LQ-45. The result showed that 

the stock portfolio was formed based on the Markowitz method without regard to 

the independence between stocks. The analysis showed that the VaR model with 

the variance-covariance approach is the best model for measuring the maximum 

potential loss of a manufacturing stock portfolio. Salsabila and Hasnawati (2018) 

investigated the value of portfolio risk in the Indonesian Companies Listed on the 

LQ45 Index for the 2013–2016 period. They constructed the portfolio based on the 

Markowitz method without examining the dependencies of every single asset 

making up the portfolio. Then, the portfolio formed was used as a reference for 

predicting the value of the loss risk.  

Next, Pasaribu (2019) explored the amount of loss risk in a portfolio 

composed of liquid stocks on the Indonesian stock market. However, this study did 

not specifically explain the procedure for compiling a stock portfolio; they used a 

portfolio determined in another study and then analyzed the value of the loss risk 

using VaR. Juniar et al. (2020) formation of an optimal portfolio with the 

Markowitz model and analyzed the loss risk based on VaR for 10 Sharia stocks in 

the Jakarta Islamic Index. In this study, there was no dependency test on each stock, 

so there was no conclusion about whether single asset were mutually dependent or 

mutually independent. Loss risk analysis of Portfolio formation was carried out 

using VaR-MCS. The results showed that for a single asset, at a 99% confidence 

level and a one-day holding period, the most significant loss occurred in 

ADRO.JK, which was -7.24%. VaR MCS predicted a loss of -4.32% in the stock 

portfolio with the same confidence level and holding period. The result suggested 

that the portfolio can minimize the value of the loss risk. 

KSEI Indonesia. (2022b) reported that banking stocks are among the most 

in demand by investors. Referring to this fact, Sholikhah, Sudarto and Shaferi, 

(2020) analyzed banking stocks by forming a portfolio to minimize the loss risk. 

Based on the stock price of 10 banks in Indonesia in March - July 2020, the MVEP 

method resulted that stocks with the highest proportion were BBNI.JK (20.23%) 

and stocks with the lowest proportion were BBHI.JK (1.32%). This study did not 

include the process of preparing a portfolio, so it was likely that the results obtained 

needed to be more accurate. Research related to Indonesian banking stocks was 

also conducted by Irsan, Priscilla and Siswanto (2022). They particularly examined 

the risk value using the VAR model with a historical simulation and variance-
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covariance approach. The portfolio weight was determined using the MVEP 

Method. The drawback of this study was not to test the dependence on three 

banking stock prices that were the research sample. The results showed that in the 

95% confidence level and holding period of one day, the results of the prediction 

of losses by holding variance-covariance and historical simulation were -0.02790 

and 0. 01978. 

According to Embrechts et al. (2013), to measure the loss risk in a stock 

portfolio, a distribution function of portfolio return is needed, where the 

distribution function of portfolio return is a joint distribution function of single 

asset return. If the return price of a single asset is mutually independent, then 

determining the distribution function of portfolio returns is easy to determine 

(Bernard et al., 2018). Nevertheless, the distribution function of portfolio returns 

will require more work to determine if single-asset returns are mutually dependent 

(Bignozzi et al., 2015). To solve this problem, Pucetti (2013) proposed an 

alternative to calculating the upper bound of portfolio loss risk without using the 

portfolio distribution function. Chen et al. (2022) guaranteed that the upper bound 

obtained will always be more significant or at least the same as the actual loss risk.  

Based on previous research, this research predicted the loss risk in a stock 

portfolio composed of 3 stock assets that were not mutually exclusive. The risk 

measure used was Value-at-Risk (VaR) with the Cornish Fisher Expansion (CFE) 

approach. The stocks used in this study were three blue chip stocks at IDX 

Indonesia, which were not mutually exclusive with negative correlation values. 

This proposition was based on the findings of Achudume and Ugbebor (2021). 

They suggested that a portfolio will be optimal if every single asset composed of 

it is negatively correlated so that if one stock suffers a loss, other stocks can still 

cover the loss. 

 

3. Data and Methods 

3.1 Data Description 

In this study, an analysis of the upper bound of VaR on the stock portfolio used the 

stock data of Blue-chip companies at IDX Indonesia in 2022, which were Jago 

Bank (ARTO.JK), Indo Tambangraya Megah (IMTG.JK), and Mitra Keluarga 

Karyasehat (MIKA.JK). They were selected following the concept of forming a 

portfolio put forward by (Tarno et al., 2020) and (Tarno et al., 2022b) that the main 

objective of forming a portfolio was to optimize the return value by reducing the 

loss risk to as small as possible. In achieving the goal, the portfolio's single asset 

returns had to be negatively correlated. So, one day, one of the assets suffered a 
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loss. In that case, there was still a significant possibility that the other asset would 

record a profit. 

 

3.2 Convex-order 

Convex order is one of the methods used to compare two random variables with 

identical and finite expected values. The following is the convex-order definition 

for a single random variable, according to (Lu et al., 2018). 

Definition 1. [Convex-order] Let 
1X  and 

2X  be two random variables, and g is a 

convex function such that the values E[g(
1X )] and E[g(

2X )] are defined. 
1X  is 

said to be smaller than 2X  in convex-order ( 1X  ≤co 2X ) if E[g( 1X )] ≤ E[g( 2X )]. 

According to Florea et al. (2015), Convex-orders are closely related to stop-loss 

orders; this can be seen from a bi-implicated relationship between the two. The 

definition of stop-loss-order for two single random variables, according to 

Bouhadjar et al. (2016), is as follows: 

Definition 2. Suppose there are two random variables, 1X  and 2X . 1X  is said to 

be smaller than 2X  in the stop-loss-order ( 1X  ≤sl 2X ) if for every constant K holds: 

   1 2E X K E X K
 

      and E[ 1X ] = E[ 2X ] (1) 

Referring to Jain and Gupta (2018), apart from the bi-implication 

relationship, several relationships between convex orders and stop-loss orders are 

as follows: (i) if 1X  ≤co 2X , then E[ 1X ] = E[ 2X ]; (ii) If 1X  ≤co 2X  then 1X  ≤sl 

2X ; (iii) 1X  ≤sl 2X  then 1X  ≤co 2X . 

 

3.3 Commonotonic Random Variables 

Suppose we have a set X which contains some N random variables, namely, X1, X2, 

…,  NX . A is a commonotonic set if one of the following equivalent statements is 

fulfilled (Gao and Zhao, 2017): (1) X has commonotonic-support. A commonotonic 

set A ⊂ ℝN is called commonotonic-support of X if P[X ∈ A] = 1. (2) For every x 

= (𝑥1, 𝑥2, … , 𝑥𝑛 ), then 𝐹𝑋(x) = min  1 1 2 2( ), ( ),..., ( )X X Xn nF x F x F x  (3) For random 

variable U ~ Uniform (0,1), valid X similar in distribution to 

 1 1 1

1 2( ), ( ),..., ( )X X XNF U F U F U  
; (4) There is a random variable Z and an 

undecreasing function 𝜑𝑖such that X is similar in distribution to 

 1 2( ), ( ),..., ( )NZ Z Z   . 
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According to Kumar and Srinivasan (2014), one of the characteristics of 

the random variable is having a distribution function that plays a vital role in 

predicting risk values. Suppose X is a single random variable with the FX (⋅) 

distribution function. Based on Cheung and Vanduffel (2013), for each random 

variable X, there is XC which is the Commonotonic Random Variable of X, and 

there is φ which is a non-degenerate function, and random variable Z so that XC is 

similar in the distribution of 
1( )XF U

. As U is distributed Uniformly (0,1), in the 

end, the values of 
1( )XF U

 are the values of the random variable X itself. As a result, 

X is similar in distribution to X, and the distribution function of XC is the same as 

the distribution function X, namely FX (⋅) (Ortega-Jiménez et al., 2021). 

 

The Upper Bound in Convex-Order for Stock Portfolio 

According to Jakobsons and Vanduffel (2015), a convex-order bound applies for 

each random variable X, which is a single asset return, and SN, which is a portfolio 

return of N stock assets. Furthermore, the upper bound in the convex order will be 

a reference for measuring the bound of the loss risk for the  𝑆𝑁. portfolio. For X1, 

X2, …, XN, which are returns from some N stocks, SN is obtained through the 

following equation (R. Zhou and Palomar, 2021): 

1 2 ...N NS X X X     (2) 

Bernard et al. (2017) state that the upper bounds in the convex-order sequence for 

X and SN are XC and 
C

NS . XC is the commonotonic random variable of X, while 
C

NS  

is the commonotonic random variable of 𝑆𝑁. So, mathematically, it can be written 

as: 
C

N co NS S  (3) 

Inequality (3) implies 
C

NS  also being the upper bound of the stop-loss order 

for 𝑆𝑁, so it can be written as follows: 
C

N sl NS S  (4) 

According to Haugh et al. (2015), since every iX  is guaranteed to have 
C

iX  

as a boundary in the convex-order, then 
C

NS   can be obtained by adding up each 

C

iX  value, namely: 

1 2 ...C C C C

N NS X X X     (5) 
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Then, the inverse distribution function for from 
C

NS  at point α ∈ (0,1), i.e. 

1( )C
NS

F 
 is given by the following theorem: 

Theorem 1. (Sun X. et al., 2018) inverse distribution function for from 𝑆𝑁
𝐶   at point 

α ∈ (0,1), defined as: 

1( )C
NS

F 
=  1

1

n

Xi

i

F 



  (6) 

 

The Upper Bound of VaR on the Stock Portfolio 

In stock portfolios, a risk measure can be used to predict the loss risk that might 

occur in the future (Zhou et al., 2018). In this study, the risk measure used is VaR-

CFE. Theoretically, VaR is the maximum risk value that can still be tolerated at a 

confidence level of 1-α, α ∈ (0,1) with a specific holding period. Suppose S3 is a 

random variable representing the portfolio return of 3 stocks, VaR for S3 at a 

confidence level of (1 – α) is defined as (Alshamali et al., 2021): 

3

1

1 3( ) ( )SVaR S F 

   (7) 

that is, 
3

1( )SF   is the inverse of the distribution function of 
3
( )SF  . 

According to Feng, Wächter and Staum (2015), to predict the value of 

VaR1−𝛼(𝑆3), a distribution function 
3
( )SF   and an inverse distribution function 

3

1( )SF    are needed. If X1, X2 and X3 are single asset returns that makeup mutually 

independent portfolio returns, then 
3
( )SF   is relatively easy to determine using the 

Convolution or Panjer Recursion method (Cooper et al., 2021). However, if X1, X2 

and X3 are mutually dependent, 
3
( )SF   and 

3

1( )SF    become difficult to determine. 

As a result, the VaR model cannot be constructed, and we cannot estimate the loss 

risk. To overcome this problem, (Hanbali et al., 2022) introduced another 

alternative to predict the loss risk, namely by determining the upper bound value 

for 1 3( )VaR S . The upper bound of 1 3( )VaR S  is given by the following theorem: 

Theorem 2. (Dhaene et al., 2014) for every random variable Y and Z, apply:  

1 1( ) ( )slY Z VaR Y VaR Z      (8) 

which applies to every α ∈ (0,1). 

In previous section, it has been explained that for each 3S , one can construct 3

CS , 

a commonotonic random variable of 3S , as well as an upper bound for 3S  in 

convex orders and stop-loss orders. Therefore, based on Theorem 2, it is obtained 
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1 3 1 3( ) ( )cVaR S VaR S    (9) 

So, the upper bound of portfolio loss risk is the VaR value of 𝑆3
𝐶 .  Then, the 

VaR1−𝛼(𝑆3
𝐶) construct is determined based on the following theorem: 

Teorema 3. (Cheung et al., 2017) Consider 𝑋1, 𝑋2, … 𝑋𝑁 as commonotonic 

random variable, and suppose: 

1 2 ....c c c c

N NS X X X     (10) 

 Then for every α ∈ (0,1), the additive properties of VaR apply, namely: 

     1 1 1 1 2 1( ) ...c

N NVaR S VaR X VaR X VaR X           (11) 

For a portfolio composed of 3 single assets, the predicted value of losses using the 

VaR method at a confidence level of 1-α will not be greater than the sum of 

 1 1VaR X ,  1 2VaR X , and  1 3VaR X . Alternatively, if written in the 

equation is as follows: 

     1 3 1 1 1 2 1 3( )VaR S VaR X VaR X VaR X          (12) 

 

Cornish Fisher Expansion (CFE) Approach on VaR Method 

Amédée-Manesme et al. (2019) argue that if stock returns do not precisely follow 

the normal distribution (skewness = 0 and kurtosis = 3), then the results of 

calculating VaR with the HS, VC, and MCS approaches will be inefficient. To 

overcome this problem, the CFE method can be used as an alternative to 

calculating VaR. CFE tends to provide a larger estimate of the VaR value. 

However, the VaR estimate will be smaller, especially if the data return has a 

positive slope. Specifically, ECF considers skewness and kurtosis values in VaR 

calculations (Christoph et al., 2020).  

By using the CFE approach, the α-th used for VaR measurements is 

expanded by the following formula (Rastegar and Amzajerdi, 2019) 

CFE= 
        2 3 3 21 ( ) 3 ( ) 2 5 ( )

6 24 36

q S X q q X q q S X
q

    



  
    (13) 

If the kurtosis value is less than 3, then the CFE formula is as follows: 

CFE= 
        2 3 3 21 ( ) 3 ( ) 2 5 ( )

6 24 36

q S X q q K X q q S X
q

    



  
    (14) 

where, CFE is the Cornish-Fisher expansion value; q  is the α-the quantile of 

Standard Normal distribution; S(X) is the skewness of stock returns; K(X) is the 

kurtosis of stock returns; ( )X  is the difference in excess kurtosis values. If the 
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initial investment value is V0 and the holding period is t, then the VaR formula with 

the CFE approach at (1 – α) confidence level can be calculated as (Westgaard et 

al., 2020): 

( )CFEVaR X 
0 ( )V CFE T      (15) 

with, μ is stock return mean, and σ is stock volatility. 

 

Risk Prediction Accuracy with Backtesting Test 

The concept of accuracy testing in the backtesting method calculates the violation 

ratio (Zhang and Nadarajah, 2018). In the period 1EK   to period UK  (length of the 

test window), the violation is symbolized by k , which is worth 1 if there is a 

violation and 0 if there is no violation in period k. Rt is the return in period k, and 

Adj-Esk is the value of Adj-ES in period k. The number of violations is symbolized 

by jv  with j = {0, 1}, where 1v  is the number of k  which is worth 1 (the number 

of days the violation occurred), and 0v  is the number that is worth 0 (the number 

of days without a violation). 

1

1

E

K

k

k K

v 


   and 0v  = 1UK v  (16) 

The violation ratio (VR) is calculated by comparing 1v  with the expected 

number of violations. Where 𝑚0 is the probability of the estimated violation, then 

1

0 U

v
VR

m K



 (17) 

If VR = 1 or VR < 1 then the risk prediction is accurate, meanwhile if VR > 

1 then the risk prediction isn’t accurate. 

 

4. Result and Discussion 

The historical stock price data that became the sample was from 10/25/21 to 

10/21/22. So, with each variable, there will be 246 data. The following is a 

descriptive statistical value of historical stock price: 

 

Table 1. Descriptive Statistics of Daily Historical Stock Price 
 Mean St. dev Min Max Skewness Kurtosis 

ARTO.JK 12208.90 3846.02 4680 19000 -0.05798 -1.38039 

ITMG.JK 29913.16 7947.07 19100 44175 0.31826 -1.22953 

MIKA.JK 2481.88 234.61 2090 3050 0.08202 -1.22934 

  Soruce: Research finding. 
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Referring to the standard deviation value, the stock with the highest deviation 

from the average value was ITMG.JK. Meanwhile, the stock with the most 

homogeneous value and the lowest deviation was MIKA.JK. Similarly, based on 

the skewness value, the ITMG.JK and MIKA.JK stock price data tended to 

converge at a value smaller than the average because the two stocks had a positive 

skewness value. For ARTO.JK, the negative skewness value meant that the stock 

price data converged during the observation period at a value greater than the 

average. The kurtosis of all assets was less than 0. This state suggested that the 

distribution curve was flatter than a normal curve with the same mean and standard 

deviation. During the observation period, the three stocks experienced various 

price fluctuations. To find out the fluctuation pattern, we present a time series plot 

in the following figure: 

 
Figure 1. Time Series Plots of Daily Historical Stock Price at Observation Period 

Soruce: Research finding. 

 

During the observation period, the stocks price experiencing the most 

significant price decline were Arto.JK. At the beginning of the period (10/25/21), 

the stock price was at the IDR 14,925 level; this value dropped to IDR 5.425 in the 

final recording period. Referring to Detik Finance, the main factor causing this 

decline was an increase in the benchmark interest rate issued by Bank Indonesia 

(Finance Detik, 2022). Unlike Arto.JK, two other stocks price experienced a 

significant increase. For MIKA.JK, the highest increase occurred around March - 

May 2022. As for ITMG.JK, the increase occurred more slowly from the beginning 

to the end of the recording period. 

We need historical return values to construct the VaR model on upper-bound 

portfolio loss risk prediction. The return value is obtained in this study using the 

Log return method. Suppose there are 𝑃𝑡 and 𝑃𝑡−1, which are stock prices in periods 

t and t-1, then the return value for period t can be obtained through the following 

equation: 
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 
 (16) 

Descriptive statistical values for each single asset return are presented in the 

following table: 

 

Table 2. Descriptive Statistics of Daily Historical Return 

  Mean St. dev Min Max Skewness Kurtosis 

ARTO.JK -0.00415 0.03888 -0.07201 0.18055 0.75772 2.11977 

ITMG.JK 0.00231 0.02798 -0.07235 0.11790 0.41569 1.49769 

MIKA.JK 0.00104 0.02289 -0.07134 0.07232 -0.00222 1.51736 

Soruce: Research finding. 

During the observation period, the stock that provided the most considerable 

average daily profit was ITMG.JK, which was engaged in coal mining. Coal was 

one of the largest mining commodities exported by Indonesia, and its price tended 

to increase during the observation period. The increased price was due to plans to 

lift the ban on coal imported from Australia, increase the capacity of coal rail 

transport, and improve logistics conditions because the weather was back to normal 

(Kompas, 2021). Furthermore, the stock with the lowest average return was 

ARTO.JK (-0.415%). This condition showed the value of the losses recorded by 

ARTO.JK during the observation period was more significant than the value of the 

profits received. The fall in digital bank stocks, such as ARTO.JK., was caused by 

expensive valuations compared to other big banks. Then, the average profitability 

of digital bank issuers was still relatively small. The highest profit values were 

recorded during the observation period by ARTO.JK, ITMG.JK, and MIKA.JK 

was 18.055%, 11.790%, and 7.23%, respectively. Referring to the Skewness value, 

ARTO.JK and ITMG.JK returns tended to center on a value that was smaller than 

the average; this was because the skewness of both was positive. 

In determining the upper bound of the portfolio loss risk, the first 

procedure was to determine the portfolio model used. Because our goal was to 

determine the upper bound of the portfolio loss risk in general, the portfolio model 

we choose was the general model, namely: 

3, 1, 2, 3,t t t tS R R R    (17) 

with, 3,tS  is the portfolio return in period t. 1,tR , 2,tR , and 3,tR  respectively were 

the stock returns of ARTO.JK, ITMG.JK, and MIKA.JK in period t. Furthermore, 

before carrying out the correlation test, we performed a normality test for every 

asset return. The purpose of the normality test was related to selecting the best 
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correlation test method to be used. If every asset return was normally distributed, 

the best correlation test method was Pearson correlation, otherwise, we could use 

the Spearman method (Aghnitama et al., 2021). By using α = 5%, the normality 

test results using the Kolmogorov-Smirnov test are as follows: 

 

Table 3. Normality Test of Daily Historical Return 

  KS value Sig Decision 

ARTO.JK 0.978 0.294 The data are normally distributed 

ITMG.JK 1.207 0.109 The data are normally distributed 

MIKA.JK  1.004 0.265 The data are normally distributed 

Soruce: Research finding. 

 

Table 3 shows that the value of each single asset return is sig > α; therefore, 

we concluded that daily historical returns were normal. Since the data were 

normally distributed, the correlation test method chosen was Pearson's correlation. 

The Pearson correlation method calculates the correlation value based on the 

product moment of each data value on the corresponding variable. The statistical 

test values for the Pearson correlation test are given in the following table: 

 

Table 4. Pearson Correlation Test Statistical Test Scores 

 ARTO.JK ITMG.JK MIKA.JK 

ARTO.JK r = 1 
r    = -0.133 

sig = 0.037 

r    = -0.126 

sig = -0.049 

ITMG.JK 
r    = -0.133 

sig =0.037 
r = 1 

r    =  -0.163 

sig = 0.011 

MIKA.JK 
r    = -0.126 

sig = 0.049 

r    = -0.163 

sig = 0.011 
r = 1 

Soruce: Research finding. 

 

Table 4 shows a significant negative correlation between the three stock 

returns; therefore, the stock portfolio formed was ideal based on the rules for 

compiling a portfolio according to (Hersugondo et al., 2022). Before determining 

the upper bound for S3, we present the value of descriptive statistics for S3 to obtain 

characteristics and descriptive information before we determined the upper bound 

of losses using VaR. 
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Table 5. Descriptive Statistics of Portfolio Return 

  Mean St. dev Min Max Skewness Kurtosis 

Portfolio 

Return 
0.08279 0.04578 -0.11208 0.15504 0.03070 -0.08684 

Soruce: Research finding. 

 

Table 5 exhibits that the formation of a portfolio can produce an average 

positive return and suggests that during the observation period, the profits obtained 

by investors were worth more than the losses received. The most significant loss 

value received on portfolio investment was -0.11208. However, this loss's value 

was smaller than the maximum profit value of 15,504%. In other words, the 

maximum profit earned could still cover the losses incurred. The distribution of 

portfolio return data tended to be centered on values below the average; this 

condition referred to skewness with a positive value. Furthermore, the most 

centered data distribution was in the value interval 0.03421 – 0.07882, with a 

frequency of 50 data. Furthermore, the time series plot of stock return is given in 

the following figure: 

 
Figure 3. Time Series Plots of Daily Portfolio Return at Observation Period 

Soruce: Research finding. 

 

Figure 3 shows that the portfolio return is stationary during the observation 

period. It means there are no extreme jumps in value or outlier data. The highest 

profit value was recorded on 05/19/22, while the biggest loss occurred on 02/12/22. 

The previous chapter explained that the upper bound for portfolio losses using the 

VaR risk measure was the sum of the VaR values of each single asset return. The 

advantage of this method was that we did not need to construct a portfolio return 

distribution function, so the processing steps became efficient. Theoretically, the 

results obtained are guaranteed to be accurate. 
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The Upper Bound of Portfolio Loss Risk Using VaR with Cornish-Fisher Expansion (CFE) 

For example, 
3P  is a portfolio composed of ARTO.JK, ITMG.JK, and MIKA.JK 

stocks and 
3S  is a portfolio return. In the t-period, the upper bound of the VaR of 

3,tP  at each confidence level (1 – α) and the holding period w is obtained using the 

following formula: 

(1 ), 3 (1 ), 1 (1 ), 2 (1 ), 3( ) ( ) ( ) ( )CFE CFE CFE CFE

w w w wVaR S VaR R VaR R VaR R          (18) 
 

with 
(1 ), 1( )CFE

wVaR R , 
(1 ), 2( )CFE

wVaR R , and 
(1 ), 3( )CFE

wVaR R  respectively the VaR value 

of ARTO.JK, ITMG.JK, and MIKA.JK. 
(1 ), 3( )CFE

wVaR S  would be the upper bound 

value of the VaR portfolio P3. The following parameters will be used to calculate 

the upper bound of VaR using the CFE approach: 

 

Table 6. VaR-CFE Parameters for ARTO.JK, ITMG.JK, and MIKA.JK 

Parameters 
Value 

ARTO.JK ITMG.JK MIKA.JK 

Excess kurtosis 0 0 0 

Sig level (1-α) 95% & 99% 95% & 99% 95% & 99% 

Cornish-Fisher 

Expansion value (CFE 

Value) 

 α = 1% -2.868 -2.713 -2.711 

 α = 5% -1.619 -1.632 -1.378 

Holding period (day) 1, 3, and 5 1, 3, and 5 1, 3, and 5 

Soruce: Research finding. 

 

Since the observation period ended on 10/21/22, this date was the reference 

in determining risk predictions for the following periods. By using equation (23), 

the VaR- CFE value for a single asset at several confidence levels and holding 

periods is as follows: 

 

Tabel 7. VaR- CFE for a Single Asset at 95% Confidence Level 

  
Holding period 

1 day 3 days 5 days 

ARTO.JK -0.0588 -0.1018 -0.1315 

ITMG.JK -0.0480 -0.0831 -0.1073 

MIKA.JK -0.0326 -0.0564 -0.0729 

Soruce: Research finding. 
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At the 95% confidence level, the single asset with the most significant loss 

risk was ARTO.JK, during the 1-day holding period, the VaR- CFE prediction was 

-0.0588, meaning that the value of the loss risk that would occur for one period 

after 10/21/22 was 5.88 % of the total funds invested. If an investor had IDR 100 

million in funds, then within one day after that, the maximum possible loss that the 

investor would experience was IDR 5.88 million. Then, for a holding period of 3 

and 5 days, the predicted loss of VaR- CFE for ARTO.JK was 10.18% and 13.15%, 

respectively. Furthermore, the single asset with the smallest loss was MIKA.JK. 

This company engaged in the health sector had a predicted loss of 3.26% for a 1-

day holding period. Then, for the 3 and 5-day holding periods, the predicted loss 

risk was 5.64% and 7.29%. Furthermore, VaR- CFE predictions for the 99% 

confidence level can be seen in the following table: 

 

Tabel 8. VaR- CFE for a Single Asset at 99% Confidence Level 

  
Holding period 

1 day 3 days 5 days 

ARTO.JK -0.1074 -0.1860 -0.2401 

ITMG.JK -0.0782 -0.1355 -0.1749 

MIKA.JK -0.0631 -0.1093 -0.1411 

Soruce: Research finding. 

 

At the 99% confidence level, the stock with the highest loss prediction value 

and the slightest loss value was the same as at the 95% confidence level. ARTO.JK 

was the stock with the highest prediction of loss, and MIKA.JK was the stock with 

the minor prediction of loss. After obtaining the loss risk value of a single asset, 

then we used these results to obtain the upper bound of the VaR-ECF value for a 

stock portfolio made up of 3 single assets. The upper bound of the VaR-ECF 

portfolio was obtained by adding up the value of the loss risk of a single asset at 

the corresponding confidence level and holding period. The following are the 

upper bound of the portfolio VaR-ECF value at the 95% and 99% confidence 

levels: 

Tabel 9. The Upper bound of Portfolio Loss Risk Using VaR- CFE 

Confidence level 
Holding period 

1 day 3 days 5 days 

95% -0.1394 -0.2414 -0.3116 

99% -0.2487 -0.4307 -0.5560 

Soruce: Research finding. 
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Table 9 shows that, at a 95% confidence level and 1 day holding period, the 

value of the loss investors received from the 
3P  portfolio for the next period from 

10/21/22 would not exceed 13.94%. For a 99% confidence level, the upper bound 

value obtained was 24.87%. As a validation, we constructed a 
3P  loss prediction 

value to ensure that at the appropriate level of confidence, the predicted loss risk 

value did not exceed the upper bound value. For the 95% and 99% confidence 

levels, the VaR-ECF values for the stock portfolio were -0.0731 and -0.1112. This 

predicted value was smaller than the upper bound value, so the upper bound value 

obtained was valid for measuring the value of the loss risk in the stock portfolio. 

 

Backtesting Test 

In the risk prediction, the risk prediction results could be interpreted as an estimate 

of the losses that would occur; in other words, the risk value that would occur in 

these stocks was around the predicted value obtained. Since after calculating the 

upper bound of VaR, backtesting was carried out; thus, before making predictions, 

we first determined the estimation window ( EK ) and test window ( UK ). The 

lengths of both were set equal to the in-sample and out-sample periods. For more 

details, the distribution of the estimation window and the test window can be seen 

in Table 10. 

 

Table 10. The Distribution of the Estimation Window and Test Window 

Estimation Window Test Window 

k k + KE - 1 Adj-ES (k + KE) 

1 (10/25/21) 08/27/22 Upper bound of VaR for 08/29/22 

2 (10/26/21) (08/29/22) Upper bound of VaR for 08/30/22 

3 (10/27/21) (08/30/22) Upper bound of VaR for 08/31/22 

… … … 

39 (8/29/22) (10/19/22) Upper bound of VaR for 10/20/22 

40 (8/30/22) (10/20/22) Upper bound of VaR for 10/21/22 

Soruce: Research finding. 
 

At the 95% significance level (α = 5%) and one day holding period, the 

results of the prediction of the risk of loss in the test window are as follows: 
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Table 11. The Upper Bound of VaR-CFE at Test Window Periods 

Period Actual Portfolio Return Upper bound of VaR 

08/29/22 -0.02992 -0.17401 

08/30/22 0.02174 -0.16181 

08/31/22 0.04209 -0.16412 

… … … 

10/20/22 -0.00439 -0.16321 

10/21/22 0.03465 -0.1394 

Soruce: Research finding. 

 

The main concept of the backtesting test is to measure the value of the 

Violation Ratio, calculated based on the values of 
0m  and  . The calculation of 

the Adj-ES violation ratio at the 95% confidence level was simulated on several 

values of estimated violation probability, namely 0.1%, 0.5%, 1%, 2%, 3%, 4% 

and 5%. With the help of software R 3.3.2, the obtained value of the ratio of 

violations is as follows: 

 

Table 12. Violation Ratio Value on Several 0m Value 

m0 Violation Ratio m0 Violation Ratio 

0.1% 0.002 2% 0.01 

0.5% 0.003 3% 0 

1% 0.007 5% 0 

Soruce: Research finding. 

 

In estimating the upper bound of loss risk using VaR on stock portfolio with 

a 95% confidence level, the VaR could provide accurate prediction results for each 

violation probability VR value < 1. The value of VaR could be interpreted as 

predicting losses in the corresponding period. Then, the predicted upper bound of 

VaR-CFE was applied to the following 16 periods after 10/21/22. 

 

 

 

 

 

 

 

 



 
 

Hersugondo et al.                                                                                                                        812 

 

Table 13. The Predicted Upper Bound of VaR-CFE 

Period Predict Period Predict 

10/22/22 -0.1421 10/30/22 -0.1566 

10/23/22 -0.1467 10/31/22 -0.1533 

10/24/22 -0.1527 11/1/22 -0.1520 

10/25/22 -0.1522 11/2/22 -0.1713 

10/26/22 -0.1387 11/3/22 -0.1515 

10/27/22 -0.1417 11/4/22 -0.1454 

10/28/22 -0.1442 11/5/22 -0.1662 

10/29/22 -0.1412 11/6/22 -0.1398 

Soruce: Research finding. 

 

The highest estimated loss occurred on 11/2/22, which was -0.1713. Thus, 

investors needed to prepare a good risk management strategy so that the losses did 

not have a destructive impact on the investment being carried out. During this 

period, investors were not advised to sell their assets on the Indonesia Stock 

Exchange because when there was a significant loss, the asset price decreases, 

increasing the loss if investors sell their assets.  

 

5. Conclussion 

Based on the analysis in section 4, we conclude that the three single assets we have 

chosen to compile the portfolio follow the optimal portfolio rule because the 

correlation between single assets is negative. Based on the comotonic properties, 

the portfolio loss risk ceiling is equal to the sum of the loss values of every single 

asset. In this study, the loss risk is measured using the VaR-CFE model. The stock 

with the highest loss value for a single asset is ARTO.JK. At the 95% confidence 

level and one day holding period, the predicted value of ARTO.JK's stock price 

loss for the period after 10/21/22 is -0.0588. Furthermore, the single asset with the 

smallest predicted loss value is MIKA.JK operates in the health sector. For a 95% 

confidence level and a one-day holding period, the loss risk for this stock is -

0.0326. Finally, the upper bound for portfolio loss risk at the 95% confidence level 

is -0.1394. After validation, the results show that the VaR-ECF value of the stock 

portfolio at the 95% confidence level and one-day holding period is -0.0731; this 

value is proven to be lower than the upper bound predicted value. 
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