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Applications of the linear Differential Equations on the
plane and Elements of Nonlinear Systems, In Economics

Farkhondeh J abalameli*

Abstract

In recent years, it has become increasingly important to
incorporate explicit dynamics in economic analysis.

These two tools that mathematicians have developed,
differential equations and optimal control theory, are probably
the most basic for economists to analyze dynamic problems.

In this paper I will consider the linear differential equations

on the plane (phase diagram) and elements of nonlinear systems,
when we have unequal real roots of the same signs and opposite

signs of characteristic roots, and the applications of the theory
of differential equations to certain macroeconomic problems.

The basic tools for discussion are phase diagram techniques.
Keywords: Differential Equations, Linear Systems, Nonlinear
Systems, Phase Diagram (Plane), Liapunov’s Theorem.

Introduction

Differential equations appear frequently in mathematical models that
attempt to describe real-life situations. Many natural laws and hypotheses can be
translated via mathematical language into equations mvolving derivatives. For
example, derivatives appear in physics as velocities and accelerations, in
geometry as slopes, in biology as rates of growth of populations, in psychology
as rates of learning, in finance as rates of growth of investments and in
economics as rates of change of the cost of living.
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The study of linear differential equations for the two-dimensional case 1s
important, because many applications of differential equations are often two-
dimensional and a number of key concepts such as “node”, “saddle pomnt”,
“gpiral point”, and “center” (which do not appear in one-dimensional problems)
appear in two-dimensional problems. Also, the linear system for the two-
dimensional case is often used as an approximation of the nonlinear system, and
hence it is important to study the linear system, and understand the

circumstances in which such an approximation is possible.

Nonlinear differential equations and systems of nonlinear differential
equations occur frequently in applications. However, only a few types of
nonlinear differential equations (for example, separable, homogenous, exact) can
be solved explicitly. The same is true for nonlinear systems.

There are many applications of the theory of differential equation systems
in economic problems. A simple illustration of the application to
macroeconomics may be found in the stability of macro equilibrium. Nikaido
(1972) provided a useful application of the nonlinear systems in the Tobin’s
seminal work (1965), incorporating money into the Solow-Swan growth model,
the “money and growth” model. Takayama and Drabicki (1985) discussed in the
neoclassical growth model with money and used a nonlinear differential system
and phase diagram for providing a stable steady state. Furthermore, in dynamic
programming and control problem, that are powerful tools in related problem
analysis, linear and nonlinear differential systems can be apphed.

This paper is organized as follows. In section one, linear system and
dynamic behavior of the solution on the plane with unequal real roots of the
same signs and opposite signs, has discussed. Section two is about nonlinear
system, local behavior of the trajectories on the plane and stability of the
nonlinear system Liapunov’s direct model.

And in the last section, application of the theory of difterential equation
systems in IS-LM model is illustrated by using phase diagrain techniques.

1- The Phase Plane: Linear Systems

Since many differential equations cannot be solved conveniently by
analytical methods, it is important to consider what qualitative information can
be obtained about their solutions without actually solving the equations.
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In this section, I investigate the dynamic behavior of the solutions systems

of linear differential equations on the plane.
I start with a secend order linear homogeneous system with constant

coefficients. Such a system has the form (Boyce, 2000):

dX _

—=AX (1)

Where A 1s a 2X2 constant matrix and X 1s a 2X1 vector. The solutions of
Eqg.(1) of the form are:

X=Ee" (2)

It

Upon canceling the nonzero scalar factor € it can be obtained

(A=) & =0 ' B

To solve the system of difterential equation (1), we must solve the system
of algebraic equations (3). This latter problem is precisely the one that
determines the eigenvalues and eigenvectors of the matrix A. For the system one
points where AX=0 correspond to equilibrium (constant) solutions and they are
called critical points. Assuming that A is nonsingular, or that det A=0. It follows

that X=0 1s the only critical point of the system (1).
In analyzing the system (1) several different cases must be considered,

depending on the nature of the eigenvalues of A, that I consider two major cases
in this section.

I-1- Real Unequal Eigenvalues of the Same Sign
The general solution of Eq.(1) is

X=C EDVe" +C,E? e (4)

Where 1,  and r, are etther both positive or negative. Suppose first
thatr; <r, <0, and that the eigenvectors £ and £ are as shown in Figure 1.a.
It follows from Eq.(4) that X —0 as t— o regardless of the values of C; and
C,; 1n other words, all solutions approach the critical point at the origin as
t—o0 . If the solution starts at an initial point on the line through &'V, then C,=0.

Consequently, the solution remains on the line through & for all t, and
approaches the origin as t—oco. Similarly, if the initial point is on the line



138 / Applications of the linear Differential Equations on the plane...
through £, then the solution approaches the origin along that line. In the
general situation, it 1s helpful to rewrite Eq.(4) 1n the form:

X=¢" [Cl gD el 4+ C, 2;‘2)] (5)

Observe that 1 —r, <0 . Therefore, as long as C,#0, the term
C, &Y exp[(rl --rz)t] is negligible compared to C, &,(2) for t sufficiently large.
Thus, as t—o0, the trajectory not only approaches the origin, it also tends

toward the line through &%. Hence all solutions approach the critical point
tangent to }’;(2) except for those solutions that start exactly on the line through &".

Several trajectories are sketched in figure 1.a. Some typical graphs of x; versus t
are shown 1n figure 1.b, illustrating that all solutions exhibit exponential decay
in time. The behavior of x; versus t is similar. This type of critical point 1s called
a node or a nodal sink.

Figure 1: A node; 1; <r, <0 (a) The Phase Plane. (b) x; versus t.

1-2- Equal Eigenvalues

Now suppose that 1 =ry =r.Considering the case in which the eigenvalues
are negative. There are two subcases, depending on whether the repeated
eigenvalue has two independent eigenvectors or only one.

(a) Two independent eigenvectors

The general solution of Eq.(1) 1s

X=C W e™ +C, P ™ (6)
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: : : X, .
Where &Y and ¢® are the independent eigenvectors. The ratio —% is

X
independent of t, but depends on the components of &) and &, and on the
arbitrary constants C, and C,. Thus every trajectory lies on a straight line
through the origin, as shown in Figure 2.a. Typical graphs of x; or X, versus t are
shown in Figure 2.b. The critical point is called a proper node, or sometimes a

star point.

(a) (5)

Figure 2: A proper node, two independent eigenvector 1= =r, <0
(a) The phase plane. (b) x{ versus t.

(b) One independent eigenvector
The general solution of Eq.(1) in this case i1s:

X=C,&e" +C, (Ete" +ne™) (7)

Where ¢ is the ecigenvector and 1 is generalized eigenvector associated
with the repeated eigenvalue.

The onentation of the trajectories depend on the relative positions of & and
n. One possible situation i1s shown in Figure 3. a. To locate the trajectories it is
helptul to write the solution (7) in the form.

X=[(C,E+C,n)+C,Et]e" = ye" (8)
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To sketch the trajectory corresponding to a given pair of values of C1 and
C2 1t can be proceed in the following way. First, draw the line given by
(C,§ +C,n)+C,Et and note the direction of increasing t on this line. Two
such lines are shown in Figure 3.a, one for C,>0 and the other for C»<(. Next
note that the given trajectory passes through the point C;§ +C,n when t=0.
Further, as t increases, the direction of the vector X given by Eq.(8) follows the
direction of increasing t on the line, but the magnitude of X rapidly decreases
and approaches zero because of the decaying expotential factor ™ . Finally, as t
decreases toward -co the direction of X 1is determined by points on the
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Figure 3: An improper node, one independent eigenvector; r; =1, <0 (a) the
phase plane. (b) x1 versus t. (¢c) The phase plane

corresponding part of the line and the magnitude of X approaches infinity, thus
obtaining the heavy trajectories in Figure 3.a. A few other trajectories are lightly
sketched as well to help complete the diagram. Typical graphs of X, versus t are
shown in Figure 3.b.
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The other possible situation 1s shown in Fig 3.c, where the relative
orientation of £ and m is reserved. As indicated in this Figure, this results in a
reversal in the orientation of the trajectories.

2- Nonlinear Systems
2-1- Local Behavior of the Trajectories on the Plane
Consider a nonlinear system, (Takayama 1994)

X=f1 (XaY) > yzfz (an)a %)

Where f; and {3 are assumed to be continuously differentiable.
Furthermore, assume that the origin is an equilibrium point of (1), i.e,

£1(0,0)=0 and f, (0,0)=0

Notice that the equilibrium point in the system (9) may not be unique,
therefore assume that there exists a neighborhood (or a circle) about the origin in
which there are no other equilibrium points.

Now expand f, (x,y) and f, (X,y), in a Taylor series about the origin.
Then

X=aj1X+a12y + f1(x,y) , y=apx+any+fH(xy)  (10)

ot. (0,0) of.(0,0)
ay
fl (x,y) and f » (X,y), signify the second-order or higher order terms. From

the differentiability of the functions f; and f5 , the result is,

Where a,, = and a., = ,1=1,2 , and the functions

f,(x,y)=0(z) , f,(x,y)=0(z), where z=(x,y) (11)

Here 0(z) 1s “Landau’s O” that 1s,

-—Q-(-Z-)——>O
kAl

as ||z||— 0.
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Note that this implies f 1(0,0)=0 and f » (0,0)=0 , so that (0,0) is
indeed an equilibrium point of (10). Assume that

aj1az—azjaqy #0 (12)

The nonlinear system (9) that satisfies conditions (11) and (12) 1s
sometimes called an “almost linear system” in neighborhood of the equilibrium
point (0,0). ,

It would now be natural to conjecture that the qualitative behavior of the
paths of (9) near the equilibrium point is similar to that of the paths of the related
linear systems:

X=a11X+a12y , y=ap1X+apyy (13)

Where the ajj’s are taken from (10). The procedure for obtaining the linear
system (13) from the nonlinear system (9) 1s called “linearization”.

2-2- Stability of the Nonlinear System Liapunov’s Direct Method

In this section I discuss about stability for the nonlinear system for the n-
dimensional case. The method is known as “Liapunov’s second method” or
“direct method”, which is based on liapunov (1907) (Takayama 1993).
Liapunov’s (direct) method provides a more global type of information, such as
the asymptotic stability of an equilibrium point. It is facilitated by constructing
an auxiliary function, and it does rely on the linearization of the original
nonlinear system. ,

Since Liapunov’s method is not confined to the two-dimensional case, the
system of n first-order nonlinear differential equations can be considered as
follows:

X =1{(x) ' (14)
The system (14) is a compact form of
i_izf(x1,x2 ,...,Xn) . i:1,2,...,1‘1

Let the origin be an equulibrium point of (13), so

£(0)=0.
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The heart of Liapunov’s direct method 1s to construct a real-valued function
V(x) m which x 1s governed by (13). Now state the major theorem,

Theorem 3 (Liapunov’s Direct Method)
Suppose that there exists a real-valued, continuously differentiable function
V(x) for the system (13) such that:

(1) V(x)>o forall x# 0, and V(0)=0,

dt

(1i1) V(X)) > o as||x]|| > o

(i1) dV IILE-(—Q:I <0 for all x that satisfy (13), and

ok

Then x =0 is asymptotically globally stable, that is, X(t) — oo as
t — o0 , regardless of the initial condition.

The function V(x) is called the Liapunov function. The real valued,
continues function that has the property of condition (i) of theorem 3 is called
“Positive definite”.

3- Applications

As already stated, there are many applications of the theory of differential
equation systems in economic problems.

For example Eisner and Strots (1963) were considered net investment as a
process that expands a firm's plan size and solved the model by phase diagram.

Hartl R. (1983) has derived qualitative properties of the optimal policy for
a class of nonlinear optimal control problems. The problem structure was
characteristic of certain economic investment problems where two control
instruments influenced the rate of deterioration of a capital good. A stability
analysis in both of the planes state- costate and state-control was carried out.

Eicher.S. and Turnovsky J. (2001) have shown how, under plausible
conditions, the transitional dynamics in a two- sector R&D-based non- scale
growth model are represented by a two-dimensional stable saddle path.

Dieci. R., Bischy, G.I. and Gardinin. L. (2001) were considered a discrete-
time economic model where the savings are proportional to income and
investment demand depends on the difference between the current income and
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its exogenously assumed equilibrium level, through a nonlinear S-Shaped
increasing function and they also analyzed how changes in the parameters’
values modify both the asymptotic dynamics of the system and the structure of
the basins of the different and often coexisting attractors in the phase-plane.

In this section one of the applications of the theory of differential equations
to certain macroeconomic problems is illustrated. The basic tools are phase

diagram techniques, the theory of linear differential equations on the plane.

3-1- Static Macro Equilibrium and Its Stability
A simple illustration of the applications to macro economics may be found
in the stability of macro equilibrium and its stability. The IS-LM macro

adjustment process can be described by (Takayama 1994):

y=c[B(y-T,1)+G-y]=Q; (v.1), (15)

. M |
f:d{L(Y“f)";ii = Q2 (y.1), , (16)
Where y=output, r=interest rate, E=consumption plus mvestment

expenditures, G= government expenditures, T=taxes minus transfer payments,
=money demand, M=money supply, and P=price level.

The parameters ¢ and d, respectively, signify the speeds of adjustment for

the goods market and money market. The macro equilibrium may be defined by

(y*, r*) that satisfies

Qi (y*,r*)=0 and Qy(y*,r*) =0 (17)

Which is nothing but the point of intersection of the IS and the LM curves.
To investigate the trajectory of (15), (16), the following assumptions are
imposed: | '

O<Ey<1 , E, «<O,Ly>~0,,Lr <0, for all y and r, (18)

---(?E-—- , E, =-(2E~ , etc. Therefore:
O(y—T)

Where Ey= ==
r
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Q,y =C(E, -1)<0 , Q;,=CE, <0, (19)

Q,,=dL,>0 , Q, =dL, <0, (20)
_ . - *
Forall yand r , where Qq, __:___:5_9_]_ : Q1rE-—9—l- , etc. If investment and
0y or |

consumption are completely inelastic, E; =0 that Qq,=0 . Also, undera ’

liquidity trap L., — —o0 so that Qy, — —0o0. Hence, for such polar cases
there are:

Qir=0and/or Qpp — —0,aswellas Qqy <0 , Qp, >0  (21)

The slopes of the (Qq=0) and (Q, =0)—curves may, respectively, be
obtained as:

dr "'"Q‘Iy dr ""QZy

— . - <0 y — = >O 22
dt Q1 =0 Q1; dy Q2 =0 Q2; 2

Thus under assumption (18), the (Q;=0) — curve is downward slopihg,
and the (Q», =0) — curve is upward sloping. This is illustrated in figure 3.
These two curves, respectively, correspond to familiar IS and LM curves. Also

from (19) and (20), we may conclude that y*>0 to the left of the
(Q1=0) — curve, and r*>0 to the right of the (Q, =0) — curve.
Consider the linear approximation system of (15) and (16):

y:Q'Ty (Y“y*)”’Q'Tr (r”‘r*)a . (23)

I""-"""""(-2”2‘y (Y“y*)+Q;r (r-——r*) ’ , (24)

Where the asterisk (*) signifies that the partial derivatives are evaluated at
(y*,r*).

As discussed 1n the previous section, the shape of trajectories crucially
depends upon the eigenvalues of the corresponding linear approximation system.
The charactenistic equations of (23) and (24) can be written as:
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A% —ad+B=0 (25)
Where:
a=Qqy +Qp; and B=Qqy Q7 —Q2y Q1 (26)

and the eigenvalues are obtained as:

A LA =-—;—-[a 4/ -—4[3] | 27)

Where:

a’ 4B =(Q;, +Qy)* —4(Q;, Qx —Q; Q) (28)
=|c1-E})-dL. |* +4cdL’, E;

Since a<0 , A1 and Ao cannot be pure imaginary. Hence assuming away.

the Knife- edge case of a2 —403=0 , the behavior of the trajectory of (15) and

(16) in a neighborhood of (y* , r*) can be approximated by that of its linear
approximation system (15) , (16). It is a spiral point 1f and only 1f:

lc(1-E)~dL, |* +4cdL’, E; <0 ’ (29)
and 1t 1s a node 1f

C(1-E7)-dL. |* +4cdE] L, >0 (30)

Assuming that (29) and (30) hold, the trajectory (y,r) for (15), (16) 1n figure
4 can be illustrated, where (y*,r*) is a spiral point.

The “Keynesians”, tend to maintain a low magnitude of E; (where E;~0
signifies completely interest-inelastic consumption and investment) and / or a
high magnitude of L; (where L. — —o0 signifies the liquidity trap). Under
such circumstances, inequality of (30) 1s likely to hold, and the equilibrium point
would
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: the case of a spiral point
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Figure 5: Keynesian adjustment paths: extreme cases

be a node. When E=0 the IS curve is vertical, while when L., — —o0, the LM

curve is horizontal.
The adjustment paths of these two cases are illustrated in figure 4, where

the equilibrium point is asymptotically globally stable.
These results can be summarized as follows:
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Proposition
Under the monetarist inclination, the macro equilibrium point (y*,r*)
would be a “spiral point”, while under the Keynesian inclination it would be a

“node”. The trajectories of these cases are illustrated in figure 3.

4- Conclusion
In recent years, 1t has become increasingly important to incorporate explicit

dynamic in economic analysis.
The two tools that mathematicians have developed, differential equations
and optimal control theory, are probably the most basic for economists analyzing

dynamic problems. | |
In many of the economics problems, the theory of differential equations

can be applied. In this article at first, I review the linear differential equation on
the plane (phase diagram) and nonlinear systems, when we have unequal real
roots of the same signs and opposite signs of characteristic roots. Then I
considered the application of the theory of differential equations to certain
macroeconomic problems via phase diagram techniques. Then, the IS-LM macro
adjustment was considered by the plane and phase diagram, and its result 1s that,
under the monetarist inclination, the macro equilibrium point would be a spiral
point, while under the Keynesian inclination 1t would be a node.
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