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Abstract

It has been suggested that existing estimates of the long-run impact of a surprise move in income may have a substantial upward bias due to the presence of a trend break in 1970s (1350s) and 1980s (1360s) gross domestic product (contained oil) data of Iran. This article shows that the statistical evidence does not warrant abandoning the no-trend-break null hypothesis at the 5% significance level. A key part of the argument is that conventionally computed p values overstate the likelihood of the trend-break alternative hypothesis. This is because they do not take into account that, in practice, the data is chosen based on pretest examination of the data.
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Introduction

Tests of the unit-root hypothesis against breaking trend alternatives have gained considerable interest since the work by Perron(1989) and Rappoport and Reichlin (1989). This special section- break points and Unit Roots - brings together a set of articles on the subject.

There is considerable interest in measuring the effect on the long-run outlook for income of a surprise change in income. Estimates vary widely, from a very small effect implied by a trend stationary (TS) representation for income (Deaton 1987) to a very large effect implied by a difference stationary (DS) representation for income (Cambell and Mankiw 1987). Ultimately, this interest stems from the view that substantive economic questions depend on the magnitude of this effect. For example, Deaton (1987) argued that, if the effect is large, then modern consumption theory is in trouble, being unable to account for the observed smoothness of consumption. Nelson and Plosser (1982) argued that the magnitude of the effect reveals the ultimate source of disturbances to the economy. If the magnitude is small, then most disturbances are to aggregate demand-for example, shocks to money, household preference, or government spending. If the effect is large, according to Nelson and Plosser, then most macroeconomic disturbances are supply-side disturbances, such as the technology shocks emphasized by Prescott (1986). (For a further discussion of the issues raised by Deaton and by Nelson and Plosser, see Christiano and Eichenbaum [1990] and Quah [1990] and the references they cite.)

It has been suggested that there is a trend break in 1977 (1356) in gross Domestic product data of Iran (Noferesty 1998). The idea of break means that the change trend is a one-time innovation with permanent effect. The trend-break hypothesis has a degree of  priori appeal, since there are several "big events" in 1970s (1350s) and 1980s (1360s) period that could have sparked a trend change. Examples are 1973 (1352) oil shock and 1977 and 1978 (1356 and 1357) Iranian revolution incidence and slow down shocks of oil price fall in 1980s (1360s).

This article shows that there is little statistical evidence against the null hypothesis that has been no break in the GDP data of Iran at 5% significance level. Two difficulties make this argument less that straightforward. By elaborating on these difficulties, we hope that the results of this article may be of use to those searching for breaks in other data series. 

The first difficulty is that standard critical values for testing the presence of a break are severely biased sometimes in front of and sometimes in favor of rejecting the no-break null hypothesis. We overcome this problem by obtaining small-sample critical values by bootstrap methods. For example, the article considers the case in which an F statistic is used to test for a break in the intercept and slope of a trend against the null hypothesis that log GDP has a linear representation with an unbroken linear trend and two lags of log GDP. The conventional methodology in this context is to compare the computed F statistic against the 5% critical value of the relevant F distribution, which is 3.2. We show that if the true data-generating mechanism is a TS model with (unbroken) trend fit to log GDP of period 1951-2004 (1338-1383) (the TS representation), then 3.2 is in fact the 30% critical value if the break being tested has the size of  .32 (t/46) in the sample. The correct 5% critical value is closer to 4.1 for that date. 

The critical value discussed in the previous paragraph assumes, as does the standard one, that the break data is chosen independently of any prior information about the data being tested. This brings us to the second problem that must be confronted when searching for breaks. This arises because in practice one never selects a date to test for a break without prior information about the data. This second problem, adjusting critical values to reflect pretest examination of the data, is harder to solve than the first. The difficulty is that in practice it is hard to translate the factors that go into selecting a particular break date into a specific algorithm that could, for example, be programmed on a computer. This article describes four simple algorithms for selecting break dates and shows that the impact on critical values can be quite substantial, depending on the particular break-date-selection algorithm used. Given the difficulty in practice of articulating precisely one's break-date-selection method, this sensitivity is unfortunate and complicates inference. The article explores four options. 

Perhaps the most straightforward option is to use a set of very conservative critical values that maximize the impact of pretest data examination. Unfortunately, a byproduct of its conservative nature is that the method probably has poor power characteristics. A set of critical values that is conservative in the preceding sense is studied in the article. It assumes that the break date was selected to maximize the F statistic for testing a trend break. Assuming that the data are generated by the TS model, the 5% critical value in this case is about 15.9. This is substantially higher than the 3.2 critical values implied by the relevant F distribution. It also exceeds the largest F statistic in 1951-2004 (1338-1383) period GDP data, which is 14.77 related to 1977 (1356). Then, there is not any break at the 95% confidence interval. In fact, the probability value (p value) of 14.77 is 9% relative to the TS model null hypothesis. Then, at the 5% significance level there is not any evidence of break date in the period. As a result, other, less conservative, critical values were computed. These also deliver no evidence to warrant rejecting the no-trend-break null hypothesis.

Following is an outline of the article. Section 1 describes the no-trend-break null hypothesis. Reflecting the lack of knowledge of time series model for GDP (contained oil), the null hypothesis is computed by two models. One represents log GDP as stationary about a trend (the TS model mentioned previously), and the other represents it as autoregressive in first difference. These models and their fitted disturbances are used to generate the artificial data that form the basis for bootstrap approach to statistical inference taken in the article. The bootstrap approach pretest data examination is like that used Christiano (1992). Section 2 demonstrate the poor small-sample performance of the usual F test for a trend break and supplies small-sample critical values that are correct under the assumption that the choice of the break date is independent of the data being studied. Section 3 shows how sensitive critical values are to pretest examination of the data. That section tabulates critical values under four alternative pretest break-date selection schemes. It shows that once pretest and small-sample distributional considerations are taken into account the F test reveals no evidence (at the 5% significance level) against the null hypothesis of no trend break in GDP (contained oil) data of Iran. Section 4 considers a test for trend breaks introduced by Perron (1989). Although that test does  not share the F test's small-sample distributional problem (Christiano 1992), we show it is still the case that, Once pretest considerations are taken into account, the p value is 98% and one can not reject null hypothesis of existing unit root for GDP (contained oil) of Iran.

1- The no- Breaknull Hypothesis
Throughout this article, the null hypothesis is that there has been no break in GDP (contained oil). The bootstrap methodology that we use requires that this null hypothesis be embedded in a completely specified time series model. Doing so is complicated by the fact that there is no professional agreement on how to model log GDP, whether as stationary about a trend or as stationary process in first difference with no deterministic trend. To avoid taking a stand on these issues, we embed the null hypothesis of no trend break in two data-generating mechanisms, one that depicts log GDP as TS and another that depicts log GDP as DS. As will be seen, the basic conclusions of this article are not sensitive to which data-generating mechanism is used. 

TS and DS data-generating mechanisms were selected on the results in Tables 1 and 2, where y denotes log GDP. Consider the TS representations first. Panel A of Table 1 reports regression results for various TS models. These models are denoted by TS(k), for k=1,. . . ,4, where k denotes the number of lags in the dependent variable. Two criteria for selecting a value for k are due to Akaike (1973) and Schwarz (1978). These combine the 

Table 1: Fitted Regressions
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	Panel A: TS(k) Models, 
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	.93

(.44)
	.0015

(.0018)
	.923

(.040)
	
	
	
	.06

	.92

(.41)
	.0024

(.0016)
	1.39

(.13)
	- .43

(.13)
	
	
	.06

	1.06

(.44)
	.0027

(.0017)
	1.36

(.16)
	- .39

(.26)
	- .057

(.15)
	
	.06

	1.16

(.47)
	.002

(.0018)
	1.34

(.16)
	- .32

(.27)
	- .22

(.27)
	.10

(.15)
	.06

	Panel B: DS(k) Models, 
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	.022

(.11)
	.51

(.13)
	
	
	
	.06

	
	.021

(.012)
	.50

(.15)
	.033

(.15)
	
	
	.06

	
	.024

(.012)
	.50

(.16)
	.09

(.18)
	- .12

(.16)
	
	.06


NOTE: Results are based on ordinary least squares on annual data covering 2004 (1338-1384). In the case of the TS model, the first k observations were reserved for initial conditions, whereas the first k+1 observations were reserved for the DS model. Numbers in parentheses are standard errors. 

standard error of the regression and a penalty for large numbers of parameters. Note that, as k is increased, the regression standard error falls only very little, remaining constant at 6% after rounding. Since the Schwartz criterion penalizes additional coefficients relatively heavily, it is perhaps not surprising that it select k less than Akaike. By using Schwartz criteria and Akaike criteria k= 2 for TS model and k= 1 for DS model are selected. 
The sampling experiments, on which the conclusions of this article are based, however, assume that disturbances are iid. Consequently, it may be that a better selection criterion for our purposes is one that focuses on the dynamic properties of the fitted residuals. Evidence on this appears in Table2. 

The results in Table 2 suggest that there is significant autocorrelation in the fitted residuals of the TS(1) model. The autocorrelations at lags 1-4 are. 47 , .21 , -.04 , -.18 [see the 
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columns in the TS(1) row of Table 2]. If the residuals were independent random variables, then, asymptotically, the correlations would be realizations of normal random variables with mean 0 and standard deviation (1/T).5
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 .15, where T= 46, the number of fitted residuals. Under the independence assumption, the p values of the lag 1, 2, 3 and 4 residual autocorrelations are 0%, 7%, 62%, 89%, respectively. Thus under this sampling theory, the null hypothesis that the first and second autocorrelation is 0 can easily be rejected at conventional significant levels, whereas the other autocorrelations are not significantly different from 0. But this inference is suspect. Even if the underlying true disturbances are iid, the fitted residuals are not. As is well known, this can cause inference based on the independence assumption to be too conservative (Box and Jenkins 1976, pp. 289-293).

Table 2: Analysis of Fitted Residual 

	
	Heteroscedasticity testsa
	Autocorrelation testsb

	Model
	s1
	s2
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	Q(20)

	TS(1)
	10.89

{.05}


	.13

{.71}


	.47

( .0)

{.0}

[.12]
	.21

(.19)

{.07}

[.13]
	- .04

(.65)

{.62}

[.14]
	- .18

(.83)

{.89}

[.14]
	38.48

{.009}



	TS(2)
	16.5

{.06}


	.74

{.38}


	- .03

(.99)

{.59}

[.02]
	.08

(.40)

{.29}

[.09]
	.08

(.68)

{.71}

[.12]
	- .16

(.68)

{.86}

[.12]
	17.93

{.59}

	TS(3)
	24.66

{.02}


	.94

{.33}
	- .01

(.08)

{.54}

[.02]
	.02

(.10)

{.43}

[.02]
	- .11

(.81)

{.77}

[.11]
	- .16

(.59)

{.87}

[.13]
	18.26

{.57}

	TS(4)
	33.34

{.15}


	1.62

{.20}


	- .03

(.93)

{.59}

[.02]
	- .03

(.55)

{.58}

[.03]
	.02

(.013)

{.43}

[.04]
	- .14

(.61)

{.84}

[.12]
	16.72

{.67}

	DS(1)
	.6

{.73}


	.04

{.82}


	- .01

(.64)

{.54}

[.03]
	.09

(.34)

{.27}

[.14]
	.06

(.73)

{.66}

[.15]
	- .13

(.34)

{.81}

[.15]
	18.16

{.57}

	DS(2)
	11.08

{.05}


	.08

{.76}
	.004

(.34)

{.48}

[.03]
	.06

(.05)

{.33}

[.04]
	- .07

(.06)

{.69}

[.15]
	- .15

(.77)

{.84}

[.15]
	17.78

{.60}

	DS(3)
	16.60

{.06}


	.57

{.44}
	- .05

(.59)

{.51}

[.04]
	.017

(.23)

{.45}

[.05]
	.04

(.19)

{.89}

[.06]
	- .10

(.56)

{.74}

[.15]
	15.75

{.73}


NOTE: Numbers not in parentheses, braces, or brackets are statistics based on residuals from fitted regressions. Numbers in parentheses are p values of the empirical statistic, computed based on 1,000 bootstrap simulations of the fitted regression. Numbers in braces below si, i=1, 2, and Q(20) are p values computed using the chi-squared distribution, and those below the 
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 s are based on the Normal distribution. For the sis, the degress of freedom were the number of explanatory variables (excluding constant term) in the regression underlying the si statistic. For Q(20), 20 df were assumed. For the 
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 s, a mean of 0 and variance 1/T were used, where T denotes the number of observations. Numbers in brackets below the 
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s are the standard deviations across bootstrap simulations. See Table 1 for the definition of the TS(k) models. 

a) s1: TR2 of the regression of squared residuals on explanatory variables and the square of the first lagged explanatory variable. In addition, when there is more than one lag in the regression, the cross-product of the lag-one and lag-two explanatory variables is also included; s2: TR2 of the regression of the squared residual on one lag of itself. 

b) 
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: ith order residual autocorrelation, i= 1, 2, 3, 4; Q(20): adjusted Ljung-Box statistic at lag 20, computed as on pages 6-8 of Doan (1988).    

To further investigate whether the residual autocorrelations are significantly different from 0, while avoiding the independence assumption, we did a bootstrap experiment. We generated 1,000 artificial data sets of log GDP, each of length 46, by repeatedly simulating the TS(1) model using actual GDP for the first year (1959) as initial condition. The disturbances for these simulations were obtained by drawing randomly, with replacement, from 
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, the fitted regression residuals from the TS(1) model. By drawing the disturbances in this way, we impose the assumption that they are iid. The standard deviation, across 1,000 bootstrap simulations, of the simulated residual autocorrelations are reported in brackets in Table 2. Note that the standard deviation of the lag-one autocorrelation, .12, is lower than the value of  .15 implied by the (counterfactual) independence assumption on the residuals. It is not surprising, therefore, that the bootstrap p value [see the number in parentheses in the
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column of the TS(1) row] is 19% as opposed to the 7% p value implied by the independence assumption (the number in braces). Evidently, though a second-order autocorrelation of  .21 would seem large if the underlying data were independent, given that the correlations are based on fitted residuals it should be considerable small. 

Note from the bracketed entries in the rows in Table 2 that correspond to the TS (1) model that the standard deviations of the lags 2, 3, and 4 autocorrelations jumps up close to that implied by the independence assumption. (contract this with the models with a higher value of k.) This helps to explain why the boot strap p values of higher order autocorrelations are virtually identical to those based on the independence assumption. In particular, the lag-one autocorrelation continues to look statistically significantly different from 0.

The final autocorrelation test applied to the residuals of the TS(1) model is the Ljung-Box Q statistic for testing the null hypothesis that the first 20 residual autocorrelations are collectively 0 (Doan 1988, pp. 6-8). Its value is 38.48, which is statistically significant using chi-squared distribution with 20 df. Also this statistic reflects the strong evidence of first and second-order autocorrelation in the residuals. 

Several heteroscedasticity tests were also applied to the fitted residuals-the White (1980) test, s1; and a test for autoregressive, conditional heteroscedasticity, s2, (ARCH) (Engle 1982). Table 2 reports values for these test statistics, together with p values based on chi-squared distribution. There is some evidence of heteroscedasticity at the 5% significance level, but there is no evidence of ARCH.

In the TS(2) model there is not any evidence of autocorrelation at the 5% significance level. By using bootstrap p values (in parentheses) the lag-one autocorrelation of model TS(3) is significantly, at the 8% level, different from 0 and the lag-three of model TS(4) is significantly, at the 5% level, different from 0. None of TS(k) models in which k= 2, 3, 4 display ARCH. We nevertheless proceeded to use TS(2) model in our sampling experiments. We analyze this model using 1,000 artificial data sets of log GDP, each of length 46 generated by repeatedly simulating the TS(2) model parameterized as in Table 1, using two years of 1959 and 1960 (1338,1339) as initial conditions. Disturbances were obtained by randomly sampling with replacement from 
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are the regression residuals from the TS(2) model and are graphed in Figure 1. By drawing the disturbances in this way, we assume that they are iid. The independence assumption seems consistent with apparant lack of autocorrelation in the fitted residuals. 

Tables 1 and 2 also provide an analysis of the DS model. After reviewing DS(k) models in which k= 1, 2, 3; the DS(1) model (which corresponds to 2 lags in level) is the best model. Because the DS(1) model does not display any evidence of conditional heteroscedasticity and white heteroscedasticity. Also none of its lags display autocorrelation by using conventional and bootstrap significant level. Analysis of the DS(1) model, like that of the TS(2) model, is based on 1,000 artificial data sets, each of length 46, using the first two years observations on log GDP for initial conditions. Disturbances were drawn randomly, from 46 regression errors from the fitted DS(1) model. 

In sum, analysis of the TS and DS models in this article are based on the k= 2 and k= 1 specification respectively. This selection was made with the objective of getting the autocorrelation and conditional variance property of the fitted residuals to resemble the assumption made in the bootstrap simulations.
[image: image1.wmf]m


Fig 1: Fitted Residuals, TS (2) Model, and one Standard Error Bounds.

2- Critical Values that Ignore Pretest Examination of the Data

As a first step in looking for breaks, we estimated the following regressions:
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for i= 7, . . ., T-6. The estimation period is t= 1, . . ., T with t= 0, -1 reserved for initial conditions, and T=46. The periods t= 1 and T correspond to the annual observations 1959 (1338) and 2004 (1383), respectively. The ith regression allows the slop and intercept to change at date i. As such, it can accommodate both a discontinuous jump in the trend line or a continuous trend with a kink at date t=i. It can achieve the latter by setting
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. Let Fi denote the F statistic for testing the null hypothesis 
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- that is, that there is no time-trend break in period t=i. The tions in (1), for i=7,..., T-6, were used to compute F7,. . ., FT-6 , which are plotted in Figure 2. This Figure displays four locally maximal F statistics. They  occur on the dates 1973 (1352), 1977 (1356), 1978 (1357) and 1959 (1359). These F statistics are reported in Tables 3, together with their p values, computed in a variety of ways. The p value in the third column is based on the F distribution with 2 numerator and 40 denominator degrees of freedom. (The numerator degrees of freedom correspond to the two restrictions being tested, 
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, whereas the denominator degrees of freedom are the number of observations in the regression, 46, minus the number of parameters in the unrestricted regression, 6.) Since the p values of the locally maximal F statistics are below 5%, the conventional test procedure result in a finding of a statistically significant break at each of the four dates. This can also be seen in Figure 2, where the 5% critical value, 3.23, of the F (2,40) distribution is plotted.

Bootstrap critical values for the F statistics were obtained by computing F statistics for dates i=7, ..., 40 (=T-6) on each of the 1,000 artificial data sets generated by the TS and DS models. To discuss this further, we need some notation. Denote the F statistics obtained for the ith date on the rth artificial data set Fi,r, where i=7, ..., 40 and r=1, ..., 1000. Then, let
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The rth column of the 
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matrix F contains the 34 F statistics computed in the rth simulation. 

These were computed in the same way as the 34 empirical F statistics plotted in Figure 2. Two F matrices were computed, one based on the 1,000 artificial data sets generated by the DS model and one using the data generated by the TS model. We avoid making this dependence explicit to keep from complicating the notation. 

The x% bootstrap critical value for F, is the entry in row i of F with the property that x% of the entries in that row exceed it. Critical values corresponding to each of the TS and DS models were computed for each of i= 7,. . ., 34, and some of these are reported in Table 4. For comparison, the bottom row of that Table contains the 1%, 5%, 10% and 20% critical values of F(2,40). 
By looking at the Figure 2, It is clear that with exception of observations at beginning and end of the data set, the bootstrap 5% critical values associated with the DS model is shifted to the right relative to 5% critical values associated with F(2,40) distribution. 

Fig 2: Empirical F Statistics and Critical Values

But, the bootstrap 5% critical values associated with the TS model do not have the pattern of the DS model and sometimes its distribution is below of 5% critical values associated with F(2,40) and some time above it. The pattern of critical values associated to ith mode DS implies that using the F distribution results in too many rejections of the null hypothesis of no trend break. The pattern of critical values of the TS model implies that using the F distribution, some times may not reject the null hypothesis of no trend break. 

The simulated F statistics allow me to compute bootstrap p values for the empirical F statistics reported in Table 3.

Table 3: Selected Empirical F Statistics and Their p Values

	
	Pretest unadjusted p valuesb

	Break date
	F statistica
	F(2,40)c
	TSd
	DSe

	1973(1352)f
	3.86
	.03
	.078
	.034

	1977(1356)f
	14.77
	.0
	.0
	.0

	1978(1357)
	8.84
	.0
	.75
	.09

	1980(1359)f
	4.24
	.02
	.85
	.1

	1983(1362)
	1.8
	.18
	.004
	.33

	1984(1363)f
	2.03
	.14
	.015
	.227

	1985(1364)
	.43
	.64
	.975
	.76

	1988(1367)
	.21
	.81
	.76
	.89

	1989(1368)
	1.01
	.37
	.046
	.58

	1994(1373)
	.13
	.88
	.77
	.88

	1997(1376)
	.15
	.86
	.78
	.87


a- Empirical F statistics testing for a trend break in the period indicated in the first column.

b- p value assuming break date is selected without prior examination of the data being tested.

c- p valued of the associated column 2 F statistic using the F distribution with 2 numerator and 40 denominator degrees of freedom.

d- p value of the associated column 2 F statistic assuming that the data are generated by the TS model described in Section 1.

e- p value of the associated column 2 F statistic assuming that the data are generated by the DS model described in Section 1.

f- These data are highlighted in Figure 2.

Table 4: Critical Values of the F Statistic in Samples of 46 Observations

	
	DS model
	TS model

	t/46
	Date
	1%
	5%
	10%
	20%
	1%
	5%
	10%
	20%

	.15
	1344
	4.5
	2.7
	2.1
	1.3
	3.9
	2.9
	2.4
	1.9

	.21
	1347
	4.2
	2.5
	1.8
	1.2
	3.8
	3.2
	2.9
	2.6

	.32
	1352
	5.0
	3.5
	2.8
	1.9
	4.6
	4.1
	3.8
	3.4

	.36
	1354
	7.0
	4.6
	3.6
	2.7
	5.0
	4.3
	4.0
	3.6

	.41
	1356
	7.7
	5.2
	4.2
	3.1
	7.0
	6.1
	5.4
	5.0

	.56
	1363
	6.5
	3.9
	3.1
	2.1
	2.3
	1.5
	1.3
	.1

	.67
	1368
	6.4
	4.5
	3.6
	2.5
	1.3
	.9
	.8
	.6

	.78
	1373
	4.7
	3.0
	2.3
	1.6
	1.0
	.7
	.6
	.4

	.86
	1377
	4.7
	2.8
	2.2
	1.6
	1.3
	.8
	.7
	.5

	
	F(2,40)
	5.17
	3.2
	2.4
	1.7
	
	
	
	


Note: Rows 1-9 provide the critical values, for the indicated set of dates, size, and data-generating mechanism of simulated F statistic. The last row provides the critical values of the F distribution with 2 numerator and 40 denominator degrees of freedom. The DS model results are based on 1000 data sets, each of length 46, generated using the DS (1) model. The TS model results are based on the TS (2) model.

The columns in Table 3 marked TS and DS report the p values assuming that the data are generated by the TS and DS models, respectively. Note that the F statistics corresponding to dates such as 1973 (1352), 1977 (1356), 1978 (1357), 1980 (1359) are significant at the 5% level, while in terms of critical values associated with the TS model, among them, only the F statistic of 1977 (1356) is significant at 5% level. In addition, the F statistics of dates such as 1984 (1363) and 1989 (1368) are significant at the 2% and 5% level respectively, in terms of bootstrap critical values associated with the TS model, while they are not significant in terms of F distribution. Figure 3 plots the log GDP data used in the study and also a time trend with break in 1977 (1356). [The trend line was computed by applying ordinary least squares to Eq. (1), setting
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]. Also Figure 4 plots the log GDP and also a time trend with breaks in 1977 (1356) and 1984 (1363) and 1989 (1368). 


Figure3:Log GDP and one Broken Trend     Figure4:Log GDP and Three Broken Trends
In sum, this section documented that, for some of potential break dates, the critical values from the F distribution are too small to be useful in testing for a break date in GDP of Iran and for some other dates the critical values from the F distribution are large. The point is dramatized in Figure 2. It shows that 5% bootstrap critical values are sometimes above that implied by the relevant F distribution and sometimes it is below that. Then some of trend breaks that look statistically significant relative to the F distribution are, in fact, not and some other dates that do not look statistically significant relative to the F distribution are, in fact. 
3- Taking Account of Pretest Examination of the Data 

Let B denote the date on which a trend break occurs under the alternative hypothesis of a test. The sampling result in section 2 assumed that B was determined independently of the data being tested. This section shows that plausible ways of endogenizing the choice of B result in higher critical values for the F test for a trend break. In particular, the evidences in section 2 that there is some trend break dates in GDP, disappears completely, at the 5% level, once endogeneity  of B is taken into account. 

The first subsection formally defines four ways of endogenizing B. The fact that these models of B are explicit mathematical functions of the data reflects the requirements of our analysis. It does not reflect a view that investigators necessarily use mathematical formulas to determine B in practice. The hope is that the mathematical algorithms studied approximate reasonably well the more informal process of selecting B that investigators actually use. In many cases, they choose B based on a visual examination of the data, or of some related series, or based on the suggestion of others who have done so (Christiano 1992). 

After presenting the break-date-selection algorithms, we report the size of F test for a structural break when B is in fact endogenous, but the critical values discussed in section 2- which ignore the endogeneity of B - are used to conduct inference. In the third subsection, we report pretest adjusted critical values for the F statistic. 
3-1- Four Break-Date-Selection Methods Defined

The first two of the four algorithms for choosing B select the maximal F statistic from a subset of dates in the sample. Each is a special case of what Christiano called the F Max method. The first of these, called the F Maxuntr method, selects the maximal F statistics from the untruncated set {F7,. . . ,F40}. As is clear from Figure 2, the empirical break date chosen F Maxuntr is 1977 (1356) (see Figure 3). This is not the only plausible mechanism for endogenizing the selection of the break date, however, since others have suggested that a break date occurred at other dates, such as 1984 (1363) and 1988 (1367). Evidently, F Maxuntr does not approximate well their suggestion. An other simple algorithms that can account for the choice of 1984 (1363) as a date to test for a trend break is as follows. That algorithms captures a suspicion felt by many that a trend break occurred in the early 1980s (severe fall of oil price), as a consequence of oil shock. That algorithm, called F Max1980s, identified the break date with the date on which max{F23,. . ., F33} occurs. Evidently this algorithm choose 1984 (1363) as a date to test for a break. 

Another two algorithms are based on choosing the date with minimum-significant-level in the date ranges like that was used in F Max method. In particular the Min Siguntr method selects the date from the period 1965 to 1998 with the F statistic having the smallest p values. Similarly, Min Sig1980s limits the break date to occurring in the period 1981-1990 (1360s). Since p value is a function of the model of the null hypothesis, there is a set of Min Sig methods corresponding to the TS model and one corresponding to the DS model. 

When untruncated sample is considered, both the DS and TS versions of the Min Siguntr method select 1977 (1356) as the break. The DS version of Min Sig1980s chooses 1984 (1363) as the most likely date of the break, but the TS version selects 1983 (1362). To conserve notation, we do not make the notation for Min Sig explicitly reflect whether it is based on the DS or TS model. 

3-2- Impact on Size of Endogenizing the Choice of Break Date

Table 5 reports the size of F tests for trend breaks that ignore pretest data examination when in fact one of the four break date-selection methods introduced in the last section are used. There are two panels in Table 5, each of which corresponds to a different subset of dates from which break dates were picked. There are nine columns. Columns 2-5 pertain to the F Max method, whereas columns 6-9 pertain to the Min Sig method. Numbers in columns 2, 4, 6 and 8 are based on the DS model, and the numbers in columns 3, 5, 7 and 9 are based on the TS model.
Each number in columns 2 and 3 is the fraction of times out of 1000 that the F Max F statistic exceeds the critical value of indicated size from the F (2, 40) distribution. Results in columns 4 and 5 are the fraction of times that the bootstrap critical values discussed in section 2 are exceeded. Columns 6 and 7 report the fraction of times that the F statistic with least significance exceeds the critical value of indicated size of the F (2, 40) distribution. Columns 8 and 9, report the fraction of times that the minimum significance level is below the corresponding significance level in column 1.

The most dramatic results appear in columns 2 and 3 of panel A in Table 5. This shows that, when the data are generated by the TS model, The break date is selected by the F Maxuntr method, and the conventional practice of using critical values from the F distribution is followed, then a test with nominal 5% size in fact has size 1. When the data are generated by the DS model, then the size of this test is 39% after rounding. Of course, this enormous frequency of rejection reflects in part the fact that the critical values of the F distribution are relatively small, even when B is exogenous (Christiano (1992)). Once this is taken in to account, then the size of the F test falls, as is indicated in columns 4 and 5. For example, the F test based on

Table 5: Size of Pretest Unadjusted Trend-Break Tests When Break Dates Are Selected Endogenously and the Data Are Generated by the DS Model and the TS Model

	
	F Max method
	Min Sig method

	Nominal sizea
	F(2,40)

critical

valueb
	Bootstrap

critical

valuec
	F(2,40)

critical

valued
	Bootstrap

critical

valuee

	
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)

	A. Untruncated break-date-selection methodsf

	1%
	.143
	1
	.011
	.04
	.05
	.14
	.01
	.01

	5%
	.39
	1
	.05
	.146
	.19
	.86
	.05
	.05

	10%
	.53
	1
	.1
	.254
	.32
	.98
	.1
	.1

	20%
	.70
	1
	.2
	.42
	.52
	1
	.2
	.2

	B. Oil shock and war decade (1980s = 1360s)g

	1%
	.03
	.005
	.009
	.06
	.02
	0
	.01
	.01

	5%
	.11
	.02
	.05
	.22
	.08
	0
	.05
	.05

	10%
	.20
	.08
	.1
	.38
	.162
	.003
	.01
	.01

	20%
	.34
	.35
	.2
	.58
	.313
	.034
	.2
	.2


Note: Frequency of time, out of 1,000, that the null hypothesis, 
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, is rejected when i in tion (1) is chosen by one of the four methods described in Subsection 3.1. The italicized numbers are the results obtained when the TS model was the data-generating mechanism: the othe results are based on the DS model. 

a-Size of critical value used to assess the presence of a break. This size ignores that the break date itself was chosen as a function on the data prior to executing the test. 

b-Presence of a break is tested by comparing F Max with the critical values of the F(2, 40) distribution, which are reported in the bottom row of Table 4. 

c-F Max is compared with the bootstrap critical values for the F statistic discussed in Section 2 and reported for selected dates in Table 4. 

d-Frequency of time that the F statistic with the smallest significance level exceeds the relevant critical value of the F(2, 40) distribution. 

e-Frequency of time that the minimum significance level is below the indicated nominal significance level. 

f-Untruncated break-date-selection methods consider the possibility of a break in dates 7,..,40.

g- Break dates chosen from the restricted interval t= 23, ..., 33, which corresponds to 1980s (1360s).

a break date selected by the F Maxuntr method, which uses the pretest unadjusted boot strap critical values with 5% nominal size, in fact has size .05 relative to the DS model. Looking at panels B, we see that as the interval of dates from which the break date is selected shrinks, the size of the pretest unadjusted test falls. Then as the interval of dates shrinks, the size of the tests based on the bootstrap critical values converge by construction to the nominal size of the test (see column 8 and 9 at panel B). The only contrast result with that of Christiano is in comparing column 3 with column 5 and comparing column 7 with 9 at panel B. These columns display that bootstrap critical values associated with TS model can be smaller than the critical values of F distribution. (see Figure 2).

3-3- Critical Values of Pretest Adjusted Tests for Trend Break

Critical values of the F test for trend break that reflect the several ways of endogenizing B discussed in subsection 3.1 are reported in Table 6.
Note that, conditional on a fixed size, it takes a much larger F statistic to reject the null hypothesis 
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when the break date has been selected as a function of the data than when it has not. For example, when the break date is selected by the F Maxuntr method and the null hypothesis is the TS model, then it takes an F statistic of 15.9 to reject the null hypothesis at the 5% level. This is to be compared with the 5.2 critical value that applies if the break date is selected exogenously that is in the row of .41 (= t/46) in the Table 4. Alternatively, if the break date is selected by Min Siguntr, then the F statistic has to have an unadjusted p values of  .1% to be significant at the 5% level. The critical values in the Table can be used to assess the significance of the empirical F statistics reported in Table 3. 

Consider first the possibility of a break in 1997 (1356). This date was chosen as the most likely break date by both F Maxuntr and Min Siguntr. Relative to the TS model, a maximal F statistic of 14.77 is actually small, having a p value of 9% (See Table 7a). This contrasts sharply with the zero p value implied by the pretest unadjusted boot strap critical value and the zero p value implied by the F distribution (See Table 7a). Similarly a maximal F statistic of 14.77 has a p value of 7% relative to the DS distribution. Thus in fact there is no basis for rejecting the null hypothesis of a trend break in 1977 (1356) at the 5% level. This stands in striking contrast with the implications of the conventional testing methodology, which would result in a finding that the evidence of a trend break is considerable. This result is dramatized in Figure 2, which shows how much the pretest adjusted 5% critical values exceed all of the empirical F statistics.
Table 6: Critical Values of Pretest Adjusted Tests for Structural Break: DS Model and TS Model

	Break-date-selection

method
	1%
	5%
	10%
	20%
	70%
	80%
	90%
	99%

	A. Data Generating Mechanism: DS Model

F Max

	Untruncated
	15.27
	14.9
	9.7
	6.5
	3.44
	3.09
	2.52
	1.8

	1980s (1360s)
	9.38
	6.35
	5.25
	3.9
	1.6
	1.22
	.86
	.38

	Min Sig

	Untruncated
	0
	.003
	.007
	.016
	.1
	.12
	.18
	.31

	1980s (1360s)
	.002
	.016
	.032
	.07
	.38
	.48
	.62
	.83

	B. Data Generating Mechanism: TS Model

F Max

	Untruncated
	18.7
	15.9
	14.5
	13.3
	10.1
	9.5
	8.8
	7.9

	1980s (1360s)
	3.30
	2.6
	2.3
	1.96
	1.29
	1.18
	1.02
	.70

	Min Sig

	Untruncated
	0
	.001
	.003
	.007
	.04
	.06
	.08
	.15

	1980s (1360s)
	.001
	.005
	.011
	.026
	.148
	.202
	.29
	.52


NOTE: x is a y% critical value if the probability (here defined as frequency, out of 1,000 trials) of exceeding x is y% under the null hypothesis. In panel A the null hypothesis is the DS model, and in panel B it is the TS model. 

aThe critical values for F Max were obtained as follow. First, in each of the DS and TS cases, the 1,000 simulated F Max statistics were ranked, with the smallest one ranked 1 and the largest ranked 1,000 The F Max statistic with rank 990 is the 1% critical value, the one with rank 950 is the 5% critical value, and so on. 

bThe critical values for Min Sig were obtained in the same way as for the F Max critical values; that is, in each of the DS and TS cases the 1,000 simulated Min Sig statistics were ranked, with the smallest one ranked 1 and the largest ranked 1,000. The Min Sig statistic with rank 990 is the 1% critical value. 

There is also no basis, at the conventional 5% level, for rejecting the null hypothesis of a break at any of the other dates listed in Table 3 (see Table 7a). When the pretest data examination is taken into account, the p values of the test statistic rise, making it harder to reject the null hypothesis. It is, nevertheless, instructive to investigate the case for a break in 1984 (1363).
Table 7a: p Values of  F Statistic Testing a Trend Break in selected dates
	date
	F statistic
	Pre-test unadjusteda
	Pre-test adjustedb

	
	
	
	F Maxuntr

	
	
	F(2,40)
	TS
	DS
	TS
	DS

	1978(1357)
	8.84
	0
	.75
	.09
	.90
	.16

	1977(1356)
	14.77
	0
	0
	0
	.09
	.07

	1973(1352)
	3.86
	.03
	.03
	.078
	.99
	.60


a- Entries in these columns are taken from Table 3. 

b- Entries under F Maxuntr are the fraction of times out of 1,000 that the F Maxuntr statistic exceeded the empirical F statistic. This was computed relative to the artificial data generated by the TS and DS models, as indicated. 
The evidence pertaining to the possibility of a trend break having occurred in 1984 (1363) is collected in Table 7b. The first three columns are taken from Table 3 for ease of comparison. As noted previously, they illustrate that, although F statistic is significant at 1% level using pretest unadjusted critical values associated with TS model, but with referring to the four right hand columns, pretest adjusted critical values, evidence of the break disappears, using each of DS or TS model.

Table 7b contain different p values when 1983 (1362) is considered as the break date. It shows that there is not any evidence for break in the date when the pretest adjusted critical values is used. In the Table the date 1989 (1368) has been included, too.  As Table 7b shows, using different method of selecting the break date, has a quantitatively large impact on the p value of the F statistic. Although in the present case this impact does not effect the outcome-that there is no evidence of a break-one can imagine other cases in which it does. In sum, if an investigator introduces a break date, he must provide an algorithm for selecting it and critical values associated with it must be computed.
 Table 7b: p Values of F Statistic Testing a Trend Break in Selected Dates

	date
	F statistic
	Pre-test unadjusteda
	Pre-test adjustedb

	
	
	
	F Maxuntr
	F Max60s

	
	
	F(2,40)
	TS
	DS
	TS
	DS
	TS
	DS

	1989(1368)
	1.01
	.37
	.05
	.58
	1
	1
	.9
	.86

	1984(1363)
	2.04
	.14
	.01
	.22
	1
	.97
	.18
	.6

	1983(1362)
	1.8
	.18
	.004
	.33
	1
	.98
	.27
	.64


a- Entries in these columns are taken from Table 3. 

b- Entries under F Maxuntr are the fraction of times out of 1,000 that the F Maxuntr statistic exceeded the empirical F statistic. This was computed relative to the artificial data generated by the TS and DS models, as indicated. The entries under F Max1980s were obtained in a similar way, based on the simulated F Max1980s statistics. 

4- Perron's Modified Dikey- Fuller Test for a Trend Break

Perron (1989) and Rapport and Reichlin (1989) argued that the failure of the Dickey-Fuller test to reject the unit-root hypothesis reflects not the presence of the unit root but instead that the data are TS about a broken trend. Perron (1989) proposed a modification to the Dickey-Fuller test that permits, under the alternative to the unit-root null hypothesis, that the data are stationary about a broken trend. Noferesty (1999) used perron's critical values for GDP of Iran. He selected 1977 (1356) as the date of break by looking to log GDP Figure. Noferesty (1999) conclude the null hypothesis of existing unit root can be rejected only at the 10% significant level. 

But Perron selected the break date exogenously and for the reasons spelled out in section 3, inference using Perron's critical values is distorted when the break date is picked as a function of the data. 

Perron (1987, 1989) proposed estimating the following augmented Dickey-Fuller regression: 
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where 
[image: image35.wmf]i

t

d

 is as defined in (2). Under the null hypothesis of Perron's modified Dickey-Fuller test, 
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. In this case, (4) is a DS model that, when k= 1, reduces to the DS(1) model of this article. Perron recommended comparing the t statistic on 
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, with the critical values tabulated in his article. 

In light of analysis of the F test in section 2, it is not surprising that those critical values depend on the date, B, on which the trend break is permitted to occur under the alternative hypothesis.

As Christiano (1992) we have provided critical values for 
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at 1%, 5%, 10% and 20% significant levels for the four break-date-selection algorithms. These are computed using the 1,000 data sets generated by the DS(1) model as described in section 1. The first two are the two F Max algorithms discussed in section 3. The last two rows are the two MinSig algorithms discussed in section 3.

Table 8: Critical Values of 
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	Break-date-selection method
	1%
	5%
	10%
	20%

	   F Max
	

	Untruncated
	-7.2
	-6.4
	-6.04
	-5.64

	1980s(1360s)
	-6.8
	-5.9
	-5.6
	-5.1

	  Min Sig
	

	Untruncated
	-7.01
	-6.04
	-5.7
	-5.3

	1980s(1360s)
	-6.7
	-5.9
	-5.5
	-5.1


Note: The data-generating mechanism underlying the results in this 
Table is the DS(1) model. Critical values are for the t statistic on 
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in (4).

The column marked 
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in Table 9 reports empirical values of 
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and associated p values, under alternative breaks-date-selection mechanism. Some dates that exogenously selected as breaks date are reported at the first four rows of Table 9. For example the third rows reports that 
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for 1978 (1357) is -3.78, with a p value of  .99 significant level, assuming that 1978 (1357) was picked exogenously. Under the assumption that 1977 (1356) was picked endogenously by the F Max, the p value of 
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 is  .98. For other break-date-selection mechanism that select 1977 (1356) as a break date, the p value of  
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 is above .98. There is the same conclusion for endogenous selected dates of 1983 (1362) and 1984 (1363). Then clearly, there is not any evidence of rejecting null hypothesis of existing unit root in log GDP of Iran.

Table 9: Point Estimates, (p values), and (Expected Values) of Two Statistics Based on a Regression tion

	Break-date-selection method
	Empirical break date, B
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	1973(1352)
	1973
	-2.57

(.99)
	1.5

(.96)

	1975(1354)
	1975
	-2.62

(1)
	1.66

(.94)

	1978(1357)
	1978
	-3.74

(.99)
	2.23

(.82)

	1989(1368)
	1989
	-.77

(.98)
	.91

(.99)

	F Max
	

	Untruncated
	1977 (1356)
	-3.93

(.98)
	2.82

(.79)

	oil
	1984 (1363)
	-2.38

(.99)
	1.15

(.93)

	Min Sig
	

	Untruncated(TS & DS)
	1977 (1356)
	-3.39

(.98)
	2.82

(.73)

	TS
	1980s(1360s)
	1983 (1362)
	-2.34

(1)
	1.1

(.96)

	DS
	1980s (1360s)
	1984 (1363)
	-2.38

(1)
	1.15

(.99)
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is the likelihood ratio statistic for testing the null hypothesis 
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. It is computed as 
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, where T is the number of observations in the sample (T=46). c(=6) is a correction for small-samples bias (see Sims 1980, p.17), and
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are the sums of squared errors in the restricted and unrestricted regressions.  
We also computed a likelihood ratio statistic for testing the null hypothesis 
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. Its value when testing for a break in 1977 (1356) is 2.23, which its bootstrap p is above .7 in all break-date selection mechanisms. Then this test provide no evidence of a trend break. There is the same result for other dates. 

Conclution
This article has tested the null hypothesis that the parameters of the time series model for GDP of Iran (contained oil) have been stable during the period 1959-2004 (1338-1383), against the alternative that there has been a one time break in trend. For overcome the pitfall of selecting the break date independently of prior information about the data, we used bootstrap simulation methodology. A variety of test statistics were presented, and at the 5% significance level, none can reject the null hypothesis, even for date 1977 (1357). At the end we concluded that there is no evidence for rejecting of existing unit root in GDP (contained oil) of Iran. 

Acknowledgement
Special thanks are due to Dr Arvinrad and Hassan Ranji for their contributing to this article.
References

1- Akaike, H. (1973), "Information Theory and the Extension of the Maximum Likelihood Principle," in Proceedings of the 2nd International Symposium on Information Theory, eds. B. N. Petrov and F. Caski, Budapest: Akademi Kiado, pp. 267-281. 

2- Box, G. E. P., and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control (Rev. Ed.), San Francisco: Holden-Day. 

3- Campbell, J.Y., and Mankiw, N. G. (1987), "Are Output Fluctuation Transitory?" Quarterly Journal of Economics, 102, 857-880.

4- Christiano, L. J., and Eichenbaum, M. (1990), "Unit Roots in Real GNP: Do We Know, and Do We Care?" Carnegie-Rochester Conference Series on Public Policy, 32, spring, 7-61. 

5- Deaton, A. (1987), "Life-Cycle Models of Consumption: Is the Evidence Consistent with the Theory?" in Advances in Econometrics: Fifth World congress (Vol. II), ed. T. F. Bewley, Cambridge, U.K.: Cambridge University Press, pp. 121-148. 

6- Doan, T. A. (1988), User's Manual, RATS (Version 3), Evanston, IL: VAR Econometrics, Inc. 

7- Engle, R. F. (1982), "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, 50, 987-1007. 

8- Lawrence J. Christiano, (1992), "Searching for a Break in GNP", Journal of Business & Economic Statistics, Vol. 10, No. 3. 237-250. 

9- Nelson, C. R. and Plosser, C. I. (1982), "Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications," Journal of Monetary Economics, 10, 139-162.

10- Noferesty, M., (1999), "Time series and co-integration in econometrics", Rasa press. 

11- Perron, P. (1987), "The Great Crash, the Oil price Shock, and the Unit Root Hypothesis, "Cahier de Recherche 3887, University of Montreal, C. R. D. E.

12- Perron (1989), "The Great Crash, The Oil Price Shock, and the Unit Root Hypothesis, "Econometrica, 57, 1361-1401.

13- Prescott, E. C. (1986), "Theory Ahead of Business Cycle Measurement, "Federal Reserve Bank of Minneapolis Quarterly Review, 10, Fall, 9-22.

14- Quah, D. (1990), "Permanent and Transitory Movements in Labor Income: An Explanation for 'Excess Smoothness' in Consumption," Journal of Political Economy, 98, 449-475.

15- Rappoport, P., and Reichlin, L. (1989), "Segmented Trends and Non-stationary Times Series," Economic Journal, 99, Conference Supplement, 168-177. 

16- Schwarz, G. (1978), "Estimating the Dimension of a Model," The Annals of Statistics, 6, 461-464. 

17- Sims, C. A. (1980), "Macroeconomics and Reality," Econometrica, 48, 1-48. 

18- White, H. (1980), "A Heteroscedasticity-Consistent Covariance Matrix Estimator and Direct Test for Heteroscedasticity," Econometrica, 48, 817-838.



1966

1345



2001

1380





1991

1370



























































1986

1365



1981

1360



1976

1355









1971

1350



1996

1375

























































1961

1340





13.0



12.5



12.0



11.5



11.0















10.5

















SOM



1966

1345



2001

1380



1991

1370



1986

1365



















































































































1981

1360



1976

1355



1971

1350



1996

1375



1961

1340



13.0



12.5



12.0



11.5



11.0



10.5











1966

1345



2001

1380



1991

1370



1986

1365



1981

1360



1976

1355



1971

1350



1996

1375







1961

1340



.16



.12



.08



.04



.00



-.04



-.08



-.12



-.16



































































































(- Corresponding Author, Associate Professor, University of Tehran-Iran.

((- Professor, University of Tehran-Iran.

(((- PhD student, researcher of Statistical Research and Training Center.



_1218870106.unknown

_1219127171.unknown

_1219229351.unknown

_1219229359.unknown

_1219317490.unknown

_1219387700.unknown

_1219387691.unknown

_1219229362.unknown

_1219229355.unknown

_1219127197.unknown

_1219127351.unknown

_1219127382.unknown

_1219217525.unknown

_1219127376.unknown

_1219127357.unknown

_1219127302.unknown

_1219127332.unknown

_1219127235.unknown

_1219127183.unknown

_1219127189.unknown

_1219127179.unknown

_1218881620.unknown

_1218883978.unknown

_1218883989.unknown

_1218884539.unknown

_1218884553.unknown

_1219127166.unknown

_1218884542.unknown

_1218884092.unknown

_1218883986.unknown

_1218881656.unknown

_1218882519.unknown

_1218881625.unknown

_1218870233.unknown

_1218870931.unknown

_1218870934.unknown

_1218870248.unknown

_1218870112.unknown

_1195747190.unknown

_1195747200.unknown

_1196155842.unknown

_1196181527.unknown

_1195747205.unknown

_1195747195.unknown

_1195747183.unknown

_1195747186.unknown

_1195667289.unknown

_1195747179.unknown

_1195667314.unknown

_1195640159.unknown

