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Abstract 
he implications of the efficient market hypothesis are important in 
assessing public policy issues. This paper attempts to examine the 

weak-form efficiency of the DAX stock market. Five randomly chosen 
companies and different sub samples are used to confirm the results. The 
results show that the DAX stock market follows a random walk and 
supports the weak-form efficiency of efficient market hypothesis 
(EMH). However, in some models, the strict rational expectations 
(RE)/EMH element of ‘unpredictability’ is rejected, but not necessarily 
the view of EMH which emphasizes the impossibility of making 
supernormal profits.  
Keywords:  Stock market efficiency, German stock market, Variance 
Ratio Test, ARMA, GARCH. 
 

1- Introduction 
The topic of market efficiency has been hotly debated for over 30 

years. Although it has been tested in the form of two related theories, that is, 
the random walk and the efficient market hypothesis (EMH), there is still no 
general agreement over the validity of these theories. The random walk 
theory assumes that prices are completely stochastic in nature while the 
EMH states that profit opportunities do not exist in perfectly efficient 
markets. In fact, both of these theories assert that in well-functioning 
markets, prices are unpredictable and fully reflect all available information. 

Much of the random walk hypothesis can be traced to Louis Bachelier 
(1900). He came to the conclusion that “The mathematical expectation of the 
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speculator is zero” and he described this condition as a “fair game”. Many 
studies have been done on the hypothesis. On balance, the empirical 
evidence suggests that the hypothesis is at least approximately true 
(Beechey, Gruen and Vickery, 2000). 

Samuelson (1965) asserted that the randomness in asset prices is due to 
large groups of investors continuously seeking ways of increasing wealth. 
According to this view, the movement of market prices was a direct response 
to unanticipated market-sensitive information. This led to the ‘efficient 
market (Fama, 1960)’. If markets are efficient and current prices fully reflect 
all information, then buying and selling assets in attempt to outperform the 
market will effectively be a game of chance rather than skill. Agents process 
information effectively and immediately and incorporate this information 
into stock prices. Only new information or ‘news’ can cause changes in 
prices and since it is unforecastable, price changes should be unforecastable: 
no information at time t or earlier should help to improve the forecast of 
returns. Robert C. Higgins (1992) gave an interesting illustration of market 
efficiency: “Market efficiency is a description of how prices in competitive 
markets respond to new information. The arrival of new information to a 
competitive market can be linked to the arrival of a lamb chop to a school of 
flesh-eating piranha, where investors are -plausibly enough - the piranha. 
The instant the lamp chop hits the water; there is turmoil as the fish devour 
the meat. Very soon the meat is gone, leaving only the worthless bone 
behind, and the water returns to normal. Similarly, when new information 
reaches a competitive market there is much turmoil as investors buy and sell 
securities in response to the news, causing prices to change. Once prices 
adjust, all that is left of the information is worthless bone. No amount of 
gnawing on the bone will yield any more valuable intelligence”. 

Much research has been done on testing market efficiency and most of 
them have focused on weak-form of EMH. On the one hand, some 
researchers such as Cootner (1962), Osborne (1962) and Fama(1965) 
supported weak-form efficiency. The general result of these studies 
emphasized on randomness in price changes and that price changes were not 
useful to forecast future price changes. However, on the other hand, other 
researchers such as Fama and French (1988), Poterba and Summers (1988) 
and Fortune (1991) asserted that share price changes are predictable. Fama 
and French state that there are autocorrelations among returns that may 
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imply market inefficiency or time-varying equilibrium expected returns 
generated by rational investor behavior. Poterba and Summers conclude that 
noise trading is a plausible reason for the transitory component in stock 
prices. Fortune presents an interesting statistical analysis of the random walk 
hypothesis of stock prices (a moving-average model of returns) using over 
2700 daily observations on the S&P 500 share index. He concludes that 
previous period’s forecast errors are useful in forecasting future returns, that 
is, a violation of informational efficiency of EMH. In fact, the tests of EMH 
involve the joint hypotheses rational expectations (RE) and EMH. 

The rational expectations hypothesis is a building block for the efficient 
markets hypothesis of securities prices. In other words, an application of the 
concept of rational expectations is the efficient markets hypothesis of asset 
prices. Using the concept of rational expectations, it comes to the conclusion 
that stock prices follow a random walk when properly adjusted for 
discounting and dividends.  

Finally the outcome of tests of the EMH is important in assessing 
public policy issues such as the desirability of mergers and takeovers, short-
termism and regulation of financial institutions (Cuthbertson, 1996). This 
paper attempts to examine the weak-form efficiency of the DAX stock 
market.  

The paper is divided into four sections. Following introduction in 
section 1 we explain the EMH in section 2. Section 3 describes the data and 
analyses the empirical results. Finally section 4 concludes the paper.  
 
2- The Efficient Market Hypothesis  

The efficient market hypothesis asserts that the stock price Pt already 
incorporates all relevant information and the only reason for prices to change 
between time t and time t+1 is the arrival of ‘news’ or unanticipated events. 
Forecast errors, that is, ε t+1= Pt+1-EtPt+1 should therefore be zero on average 
and should be uncorrelated with any information Ωt that was available at the 
time the forecast was made. The latter, known as orthogonality property 
(Sargent, 1993), is often referred to as the rational expectations (RE) element 
of the EMH and may be represented as:  

  Pt+1 = EtPt+1+ εt+1                                                                      (1) 
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The forecast error is expected to be zero on average (Etε t+1= 0) because 
prices only change on the arrival of ‘news’ which itself is a random variable, 
sometimes ‘good’ sometimes ‘bad’.  

Rational expectations place restrictions only on the behavior of the first 
moment (i.e. expected value) of ε t

1. As a result, one can test the rational 
expectations hypothesis regarding these restrictions. If ε t is serially 
correlated then the orthogonality property is violated, that is, the rational 
expectations element of the EMH is violated. For example, suppose a 
serially correlated error term is the first-order autoregressive process, AR 
(1):  

εt+1 = ρεt + vt                                                                              (2)  

where vt is a random term (white noise). The forecast error (ε t=Pt-Et1Pt) 
is known at time t and hence is a part of information at time t, Ωt. According 
to equation (2), the forecast error at  

time t (εt) has a predictable effect on the forecast error at time t+1 (εt+1) 
but ε t+1 would be useful in forecasting future prices regarding equation (1). 
This violates the EMH since information known at time t, ε t, helps forecast 
future prices2. 

    The efficient markets hypothesis is often applied to the return on 
stocks, Rt, and implies that one cannot earn supernormal profits by buying 
and selling stocks. Thus an equation similar to (1) applies to stock returns, 
that is,  

εt+1= Rt+1-EtRt+1                                                                       (3)    

Et εt+1=0 

where εt+1 is considered as ‘forecast error’. To test EMH, we need a 
model of how investors form their expectations about the returns. For 

                                                                                                                                            
1- There are no restrictions on the form of second and higher moments of the distribution of εt 

if we assume the EMH/RE. For example, consider an ARCH process that variance of 

εt+1(σ²t+1) may be related to its past value (σ²t), without violating RE.   

2- There are no restrictions on the form of second and higher moments of the distribution of ε 

t if we assume the EMH/RE. For example, consider an ARCH process that variance of εt+1 

(σ²t+1) may be related to its past value (σ²t), without violating RE.   
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example, assume that: (i) Stocks pay no dividends, so that the expected 
return is the expected capital gain due to price changes, (ii) Investors are 
willing to hold stocks as long as expected or required returns are constant, 
hence:                                              

 

EtRt+1 = k                                                             (4)       

Substituting in (4) in (3) 
Rt+1= k + εt+1                                                                                 (5) 

 

where εt+1 is white noise and independent of Ωt. We may consider the 
expected or required rate of return k on the risky asset as consisting of a risk-
free rate r and a risk premium rp (i.e. k=r+rp) and equation (4) assumes both 
of these are constant over time. Since for a non-dividend paying stock, 
Rt+1=(Pt+1-Pt)/ Pt ≈ ln (Pt+1/ Pt) equation (5) implies that ex post the 
proportionate change in the stock price will equal a constant plus a random 
error, or equivalently: 

 

lnPt+1 = k + lnPt + ε t+1                                                             (6)    

 

Equation (6) is a random walk in the logarithm of P with drift term k. It 
should be noted that (the logarithm of) stock prices will only follow a 
random walk under the EMH if the risk-free rate r and the risk premium rp 
are constant and dividends are zero. The EMH assumes that excess returns 
(or forecast errors) only change in response to news so that these errors are 
innovations with respect to the information available. To test EMH, a 
definition is needed what constitutes ‘relevant information’. There are three 
forms of the efficient market  

hypothesis : (1) Weak-Form: the current price (return) is considered to 
incorporate all the information in past prices (returns) (2) Semi-strong-Form: 
the current price (return) incorporates all publicly available information 
(including past prices or returns)  

(3) Strong-Form: prices reflect all information that can possibly be 
known, including ‘insider information’.  
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To make the tests of the efficient market hypothesis (EMH) operational 
we assume expected equilibrium returns are constant and rational 
expectations holds (i.e. Rt+1 = EtRt+1+ εt+1 ). We can write this as: Rt+1=k+εt+1. 

Consider the regression: 
Rt+1 = k+ ′γ Ωt + εt+1                                         (7) 

Where Ωt= information available at time t. A test of ′γ = 0  provides 
evidence on the ‘informational efficiency’ element of the EMH/RE. In fact, 
tests of EMH usually involve the joint hypotheses RE and EMH, that is, (i) 
that agents use information rationally, (ii) that they all use the same 
equilibrium model for asset pricing which happens to be the ‘true model’.  

The regression tests vary, depending on the information assumed which 
is usually of the following type: 
a) data on past returns Rt-j (j= 0,1,2,…,m) – that is, weak form efficiency, 
b) data on scale variables such as the dividend price ratio, the earning price 
ratio or interest rates at time t or earlier,  
c) data on past forecast errors ε t-j, (j=0,1,2,…,m). 

 
If (a) and (c) are examined together this gives rise to ARMA models. A 

general ARMA (p, q) model for returns may be represented as follows: 
 

1 1( ) ( )t t tR k L R Lθ+ += + γ + ε                                (8) 

 
Where γ(L) and θ(L) are polynomials in the lag operator such that 
 

2 3
1 2 3( ) 1 ... P

PL L L L Lγ = + γ + γ + γ + + γ ,   n
t t nL R R−=           (9) 

2
1 2( ) 1 ... q

qL L L Lθ θ θ θ= + + + +                                       (10) 

 
Under the EMH we expect all parameters in γ (L) and θ (L) to be zero. 

Consider, for example, the ARMA (1, 1) model: 
 

Rt+1 = k+ 1γ Rt + ε t+1 + 2γ ε t     (11) 

In order to test weak form efficiency, the autocorrelation coefficients 
between Rt+1 and Rt-j (j=0,1,…,m) can be examined to see if they are non-
zero. If the result shows that informational efficiency does not hold, 
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information at time t can help to predict future returns, then it will be worth 
to examine the ability to make supernormal profits after taking account of 
transaction costs and possible borrowing constraints. 

 

3- Data and Empirical Results 
3-1- Data 

The study uses daily market return of the DAX stock market for the 
period of 2nd January 2004 to 14th March 2005.It includes 308 daily 
observations for the period. It also considers the 5 randomly selected 
companies including BMW, LHA, BASF, RWE and TUI. To confirm the 
results of the analysis, we also examine the first sub-sample (2nd January 
2004- 6th August 2004) and the second sub-sample (9th August 2004-14th 
March 2005). 

    This research utilizes natural log of market returns and natural log of 
individual share return in the following way: 

   

  Rt = lnPt - lnPt-1                          

  Rt = market return (or daily individual share return) in period t 

  Pt = price index (or daily price per share) at period t 

  Pt-1= price index (or daily price per share) at period t-1 

 

The paper examines some tests including autocorrelation, Dicky-Fuller 
test and variance ratios. Also, auto-regressive (AR) and auto-regressive-
moving average (ARMA) models will be analyzed. Finally, Theil inequality 
coefficient and Wilcoxon test are used to compare the models. 
    The aim of this study is to examine whether the DAX stock market 
follows a random walk or the market is weak-form efficient. If the random 
walk hypothesis holds, the weak-form of the efficient market hypothesis 
must hold, but not vice versa. Thus, evidence supporting the random walk 
model is the evidence of the market efficiency. But violation of the random 
walk model needs not to be evidence of market inefficiency in the weak 
form. (Ko and Lee, 1991) 
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3-2- Empirical Results 
3-2-1- Auto-Correlation Test and Q-Statistic 

 The most obvious test for the weak form of the random walk 
hypothesis is to directly test the null hypothesis that the autocorrelation 
coefficients of the returns are zero. One problem with testing for IID 
(Independent Identically Distributed) returns using autocorrelations is that it 
is not clear what lags to use to test for zero autocorrelation. If returns are 
IID, then all autocorrelations should be zero. One solution is to use a statistic 
that summarizes many autocorrelations known as “portmanteau” statistics, 
which are joint tests over the set of individual correlation coefficients. The 
Q-Statistic, developed by Box and Pierce (1970), is a portmanteau statistics 
that strongly tests for the random walk hypothesis. The Q-statistic at lag k is 
a test statistic for the null hypothesis that there is no autocorrelation up to 
order k and simply sums the squares of autocorrelation statistics: 

2

1

ˆ
k

k i
i

Q T
=

= ρ∑  

where ˆ iρ is the sample autocorrelation at lag i and k is the number of 
lags. This statistic tests for zero autocorrelation at all of k lags, giving power 
to test against a broad variety of alternative hypotheses for return dynamics. 
It has a chi-squared distribution with k degrees of freedom equal to the 
number of autocorrelations. This distribution can be used to determine 
whether or not the statistic is significantly different from zero. In short, the 
Q-statistic is a reliable measure and a more powerful test because 
predictability held within a number of lags may not be identified by 
examining the correlation at one particular lag.  

The auto-correlation coefficients that have been computed for the log of 
the market return series (DAX) in table 1.1 show no significant 
autocorrelation at different lags for the whole sample period. The Q-statistic 
and its respective probability for whole lags confirm that there is no 
significant autocorrelation. The results are similar to the findings of Fama 
and French (1988). 

To confirm the results, the auto-correlation coefficients of the return 
series for the two different sub-samples have been calculated. The results in 
table 1.1 confirm that there is no significant auto-correlation of daily DAX 
market returns for the whole sample period and the sub-sample periods. 
Thus no significant auto-correlation of the series suggests that the DAX 
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return series follow a random walk model. Our findings also show no 
significant autocorrelation of BMW, LHA, RWE and TUI returns. However, 
for BASF returns, there is significant autocorrelations at 1 and 2 lags.  

 

 

                         Table1-1: Results of Auto-Correlation (log of DAX return) 

 Ac 
(total) Q-Stat Ac 

(sub sample 1) Q-Stat Ac 
(sub sample 2) Q-Stat 

1 -.034 3.0 -.073 .837 -.002 .001 
2 .092 3.0 .175 5.668 -.083 1.01 
3 -.056 4.0 -.108 7.513 -.020 1.16 
4 -.026 4.2 -.057 8.032 .018 1.21 
5 -.003 4.2 -.006 8.038 -.060 1.79 
6 .058 5.3 .097 9.572 .004 1.79 
7 .012 5.3 .042 9.857 -.062 2.42 
8 -.079 7.3 -.098 11.420 -.046 2.77 
9 -.042 7.9 -.015 11.458 -.086 4.00 
10 -.133 13.6 -.191 17.476 -.038 4.24 
11 .024 13.7 .034 17.673 .064 4.92 
12 -.017 13.8 -.058 18.245 -.017 4.97 
 

3-2-2- Dicky-Fuller Test 
The results of Dicky-Fuller tests for the daily observations are 

presented in table 1.2 for the no constant & no trend model (case 1), the 
constant & no trend model (case 2) and the constant & trend model (case 3). 
The unit root tests support the random walk hypothesis for log levels of 
DAX [I (1), denoted as ‘integrated’ series and there is one unit root] and all 
companies, except BMW, and they also are I (0), a stationary series, in the 
first differences (i.e. returns). 

Our findings are similar to the results of Cooray (2003). He examined 
the random walk behavior of some stock markets including DAX using unit 
root tests and spectral analysis and came to conclusion that the DAX stock 
market follows a random walk.  It should be noted that a unit root test is only 
a necessary (but not sufficient) condition for a random walk process. 
Although the random walk hypotheses are contained in the unit root null 
hypothesis, it is the permanent/temporary nature of shocks to the series that 
concern unit root tests. These tests are clearly not designed to detect 
predictability and have no bearing on the random walk hypothesis (Campbell 
et all 1997).  
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Table 1-2: Results of Dicky-Fuller Test (log levels (L-L), log first differences (L-F-D)) 
         ADF test statistic 

 
 ADF test statistic 

 
 ADF test 

statistic 
DAX  L-L        L-F-D     LHA L-L      L-F-D RWE L-L     L-F-D 

Case 1 .49         -18.06 ***    Case1 -.55   -18.07*** Case1 1.32  -17.46*** 
Case 2 -1.42      -18.04***   Case2 -1.33  -18.06*** Case2 -1.89  -17.55*** 
Case 3 -2.11      -18.06 ***   Case3 -.98    -18.08*** Case3 -3.03  -17.55*** 
BMW  BASF  TUI  
Case1 -.38        -16.91*** Case1 1.17   -19.65*** Case1 .70     -18.33*** 
Case2 -3.34**  -16.89***      Case2 -.07    -19.72*** Case2 -.67    -18.32*** 
Case3 -3.63 ** -16.90*** Case3 -2.51  -19.83*** Case3 -.57    -18.44*** 

significant levels for no concept & no trend model (case 1): 1%, -2.57: 5%, -1.94: 10%, -
1.61; constant & no trend model  (case 2): 1%, -3.45: 5%, -2.87:10%, -2.57; constant & 
trend model (case 3): 1%, -3.98: 5%, -3.42:10%, -3.13 .*, **, *** significant at the 
10%,5% and 1% levels respectively. 

                              

  3-2-3- Variance Ratio Test 
In this section, the random walk hypothesis will be examined by 

applying the variance-ratio test. 
 

Random Walk 1 (IID Increments): the strongest version of the 

random walk hypothesis is the independently and identically distributed 

(IID) increments case that the dynamics of {Pt} are given by the following 

equation: 

Pt = μ + Pt-1 + єt        єt ~ IID (0, σ²)                             (12) 

 where μ is the expected price change or drift. Independence of 
increments {єt} implies that the random walk is also a fair game. In fact, the 
assumption of independence implies that increments are uncorrelated and 
non-linear functions of the increments are also uncorrelated. The mean and 
variance of Pt conditional on some initial value P0 at date t=0 can be 
expressed as follows 

 

E [Pt| P0] = P0 + μt                                              (13) 

Var[Pt| P0] = σ²t                                                   (14) 

 It follows that the random walk is non-stationary and conditional mean 
and variance are both linear in time.  
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Random walk 2 (Independent Increments): the second form of 
random walk hypothesis assumes that increments are independent but 
identically distributed. In this case, there is unconditional heteroskedasticity 
in єt’s. It is difficult to test for independence without assuming identical 
distributions. The lack of powerful tests for this version of the random walk 
hypothesis has led to much empirical research to develop “economic” test of 
predictability (e.g., filter rules and technical analysis). 

 

Random walk 3 (Uncorrelated Increments): the weakest version of 
the random walk hypothesis assumes that asset prices may have dependent 
but uncorrelated increments at all leads and lags. In this case, there is a 
process with Cov [єt, єt-k] = 0 for all k≠0, but where Cov [є²t, є²t-k] ≠0 for 
some k≠0. This form of process allows for conditional heteroskedasticity. 

 

A general feature of the three random walk hypotheses is that the 
variance of random walk increments must be a linear function of the time 
interval. For example, variance of rt + rt-1 must be twice the variance of rt. 
Thus the variance of random walk increments must result in a ratio close to 
one. For a time-scale q, the variance ratio statistic, VR (q), takes the form: 

( ( ))( )
( (1))
t

t

Var r qVR q
qVar r

=                                                                       (15) 

We follow Lo and Mackinlay (1988) to estimate variance ratios. The 
variance ratio is defined as     

2

2

( )( ) c

a

qVR q σ
σ

=                                                                         (16) 

Where 2
aσ  and 2 ( )c qσ  are an unbiased single period and q period 

variances and can be estimated using:       
2 2

1
1

1ˆ ˆ( )
1

nq

a k k
k

p p
nq

σ μ−
=

= − −
− ∑                                (17) 

2 21ˆ ˆ( ) ( )
nq

c k k q
k q

q p p q
m

σ μ−
=

= − −∑                                 (18) 

( 1)(1 )qm q nq q
nq

= − + −                                          (19) 
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0ˆ ( ) /nqp p nqμ = −                                                   (20) 

 

The following test statistic, Z (q), has an asymptotically standard 
normal distribution under the assumption of homoscedasticity of returns and 
can be used to test Random Walk 1. 

 
ˆ( ) [ ( ) 1]/ ( )Z q VR q qφ= −                                       (21) 

ˆ( ) [2(2 1)( 1)]/[3 ( )]q q q q nqφ = − −                           (22) 
 

As return volatilities change over time and deviate from normality, the 
heteroscedasticity-robust standard normal test statistics, Z*(q), which is used 
to test Random Walk 3, can be written as  

* ˆ( ) [ ( ) 1]/ ( )Z q VR q qθ= −                                       (23) 
21

1

2( )ˆ ˆ( ) ( )
q

k

q kq k
q

θ δ
−

=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑                                             (24) 

 2 2 2 2
1 1 1

1 1

ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ]/[ ( ) ]
nq nq

j j j k j k j j
j k j

k nq p p p p p pδ μ μ μ− − − − −
= + =

= − − − − − −∑ ∑   (25) 

 
Table1-3 presents the results of variance ratio tests of returns for 

sampling intervals of 2, 4, 6, 8, and 10 days. In testing random walk, both 
homoscedasticity test statistic, Z (q), and heteroscedasticity-robust test 
statistic, Z*(q), are calculated for various q’s. By using 1-day as our base 
observation interval, Z (q) and Z*(q) statistics are calculated for each q by 
comparing the variance of the base interval with that of 2-day, 4-day, 6-day, 
8-day, and 10-day observation intervals. The values reported in the main 
rows are the actual variance ratios, the entries below the variance ratios are Z 
(q) and the values below Z (q) are Z*(q) values. The test for random walk 
hypothesis assumes that the variance ratio of any period should be close to 
one. Trending behavior is detected in the time series if the variance ratio is 
significantly more than 1 while mean-reverting behavior is identified if VR 
(q) is significantly less than 1.   

The null hypothesis that the DAX stock returns follow a homoscedastic 
random walk can not be rejected for different q’s. In fact, the variance ratio 
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of any period is significantly close to 1. Also, the results from calculating a 
heteroscedastic-consistent statistic shows that Z*(q) is not significant, 
confirming that the DAX stock market follow a random walk. The VR (q), Z 
(q), and Z*(q) have also been computed for all companies. The random walk 
null hypothesis under homoscedasticity and heteroscedasticity is not rejected 
in the most intervals. The random walk hypothesis can be rejected when the 
test statistics are rejected for all q.  

 
Table 1-3: Estimates of variance-ratios VR (q), Z (q) and Z*(q)  

 
 

     q=2      q=4       q=6      q=8     q=10 

DAX 
 

     1.09 
    (1.69) 
    (0.87) 

     1.03    
    (0.28) 
    (0.16) 

      1.01 
     (0.12) 
     (0.05) 

     1.04 
    (0.28) 
    (0.07)  

     1.03 
    (0.15) 
    (0.08) 

BMW 
     2.67 

   (29.27)** 
   (20.44)** 

     1.03 
    (0.29) 
    (0.20) 

      0.96   
    (-0.24) 
     (0.03) 

      0.87 
    (-0.73) 
     (0.03) 

     0.84 
    (-0.80) 
     (0.04) 

LHA 
      0.85 

    (-2.64)* 
    (-2.45)* 

     1.05 
    (0.49) 
    (0.47) 

     1.05 
    (0.35) 
    (0.02) 

     1.09 
    (0.53) 
    (0.02) 

     1.10 
    (0.54) 
    (0.02) 

BASF 
     0.97 

   (-0.52) 
   (-0.31) 

     0.89 
   (-1.06) 
   (-0.67) 

     0.84 
    (-1.11) 
    (0.04) 

     0.86 
    (-0.82) 
    (0.05) 

     0.84 
    (-0.83) 
     (0.05) 

RWE 
     2.06 

   (18.63)** 
   (14.21)** 

     1.03 
    (0.33) 
    (0.26) 

     1.03 
    (0.22) 
    (0.02) 

     1.04 
    (0.28) 
    (0.03) 

     1.04 
    (0.21) 
    (0.03) 

TUI 
      0.04 

   (-16.80)** 
   (-15.90)** 

     1.02 
    (0.22) 
    (0.22) 

     1.00 
    (0.02) 
    (0.01) 

     1.02 
    (0.12) 
    (0.02) 

     1.00 
    (0.00) 
    (0.02) 

*,** Indicate significance at the 5% and 1% levels respectively. The estimates of variance 
ratios are shown in the main row. The figures below the variance ratios are Z (q) and the 
values below Z (q) are Z*(q) values. 

 

3-2-4- Auto-Regressive (AR) model 
To test weak form efficiency, first, different AR models over different 

time horizons are estimated then, for diagnostic checking, the correlogram 
(autocorrelations) of returns from the regression tests is examined. An 
autocorrelation coefficient significantly different from zero indicates the 
predictability of share returns from the past information. Table 1.4 reports 
the results of the AR (5) model. Such a model is used to examine the impact 
of the past returns on the future returns and is, as mentioned before, a test of 
weak form efficiency (Bei & Zhong-ying, 2006). Since the results were the 
same for the different AR models, only the AR (5) model has been reported.  
For DAX returns, it is clear that there is no significant coefficient of AR 
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terms. This imply that the past returns can’t help predict for future returns 
and hence weak-form efficiency hold. In the last sections we concluded that 
the DAX stock returns follow a random walk. Thus the result is consistent 
with the findings of Ko and Lee (1991).  

The AR (5) model is not significant for daily returns of all companies. 
Examining BASF returns shows that if there is only the AR (1) term in the 
regression (i.e. the AR (1) model), then the regression is acceptable.   

A logistic map equation for possible non-linearity in returns was also 
considered, but the estimates were not significant. 

 
Table 1-4: The AR (5) Model for DAX Returns and Daily Returns of 

Companies  
 Constant  AR(1)  AR(2)  AR(3)  AR(4)   AR(5) 

DAX 
(t-Statistic) 

 .00027 
(.5228) 

-.02259 
(-.3889) 

 .09202 
(1.5875) 

-.05695 
(-.9794) 

-.04021 
(-.6929) 

 .00698 
(.1202) 

BMW 
(t-Statistic) 

-.00008 
(-.1357) 

 .01963 
 (.3402) 

-.01517 
(-.2620) 

 .00343 
 (.0588) 

-.02863 
(-.4993) 

-.11286 
(-1.96) 

LHA 
(t-Statistic) 

-.00062 
(-.6333) 

-.01307 
(-.2247) 

 .13329 
 ٭(2.29) 

-.05526 
(-.9673) 

-.03437 
(-.6062) 

-.00041 
(-.0073) 

BASF 
(t-Statistic) 

 .00075 
(1.3791) 

-.11614 
 ٭(1.99-)

 .06001 
(1.0277) 

-.02830 
(-.4829) 

-.05195 
(-.8855) 

-.01533 
(-.2617) 

RWE 
(t-Statistic) 

 .00126 
(1.5125) 

-.01583 
(-.2725) 

.07426 
(1.2765) 

-.04720 
(-.8149) 

-.02903 
(-.5011) 

 .04865 
 (.8382) 

TUI 
(t-Statistic) 

 .00054 
 (.5573) 

-.03854 
(-.6631) 

 .09458 
(1.6334) 

 .00582 
 (.1002) 

-.08716 
(-1.505) 

-.00685 
(-.1189) 

*significant at 5% level of significance 

 
3-2-5 Auto-Regressive Moving Average (ARMA) model    

Regressions based on ARMA models are often used to test the 
informational efficiency assumption of the EMH. A collection of ARMA (p, 
q) models, for different orders of p and q, have been estimated and then the 
best model was selected according to Akaike information criterion (AIC) 
and Schwarz information criterion (SIC). Examining ARMA models for 
DAX stock returns show that ARMA (5, 3) is the best-fitting model. The 
regression is as follows with t-values in parentheses: 

             

Rdax = .0003+.51AR (1)-.28AR (2) -.56AR (3) +.002AR (4) +.07AR (5)  
   (t)       (.65)   (5.7)        (-3.5)         (-7.3)       (.03)         (1.32) 
         -.55MA (1) +.43MA (2) +.49MA (3)           2 0.04R =      F=2.6 
   (t)      (-7.1)    (7.9)   (9.1)                              Prob=0.009  
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It is clear that the MA (1), MA (2) and MA (3) terms are statistically 
significant. Since previous periods’ forecast errors are known (at time t) this 
may be considered as a violation of informational efficiency. However, only 
4 percent ( 2R = .04) of the variability in daily stock returns is explained by 
the regression. As a result, potential profitable arbitrage possibilities are 
likely to involve substantial risk. This regression may reject the strict 
RE/EMH element of ‘unpredictability’, but not necessarily the view of the 
EMH which emphasizes the impossibility of making supernormal profits. 

The regression results show that there are some significant ARMA 
models only for BASF, LHA and RWE returns. For LHA returns, the 
ARMA (1, 1) model is acceptable, and the best-fitting regressions for BASF 
and RWE returns are ARMA (2, 4) and ARMA (5, 5) models respectively.  

An autoregressive integrated moving average model (ARIMA) is also 
used to test whether the DAX stock returns follow a random walk. To 
examine the random walk model we need to fit the model ARIMA (0, 1, 0) 
for the price index. If the coefficient is significantly different from zero, then 
the assumption of the random walk model and weak-form efficiency will be 
violated. The results in Table 1.5 show that the ARIMA (0, 1, 0) model for 
the DAX index series and for the whole companies support the random walk 
model. Diagnostic checking confirms the results. It should be noted that 
there is significant residual autocorrelation at lag 10, 11, 12, and 19 for LHA 
returns and at lag 1 and 2 for BASF returns. 

 

Table 1-5: ARIMA (0, 1, 0) Model for DAX Index and Daily Share Price of 
Companies  

 Coefficient  Std. Error   t-Statistic      P-value 
DAX   .000271   .000534   .507423       .6122 
BMW  -.000245   .000701  -.349070       .7273 
LHA  -.000460   .000967  -.475810       .6345 
BASF   .000731   .000619  1.181369       .2384 
RWE   .001102   .000802  1.374363       .1703 
TUI   .000733   .001010    .726162         .4683 

 

3-2-6- Out-of-Sample Forecasting  
To examine the forecasting performance of various models, we use the 

first difference of the logarithm of stock prices (returns) instead of a raw 
price series. The reasons behind the issue are simple. First, as the stock 
prices often include a trend, any prediction using such a variable is 
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problematic. Second, taking logarithm of the data compacts the dynamic 
range of the series and reduces the effect of outliers.  

Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the 
Theil inequality coefficient (Theil’s U) are usually used to evaluate ex post 
forecasts. The first two forecast error criteria depend on the scale of the 
dependent variable and thus are not perfect measures to compare forecasts 
for the same series across different models. Instead, Theil’s U is scale 
invariant and is useful to examine returns. It lies between zero and one, 
where zero indicates a perfect fit. All models including Random Walk, 
ARMA and Generalized Auto Regressive Conditional Heteroscedasticity 
(GARCH) are used to generate a dynamic 5-day-ahead, 10-day-ahead and 
15-day-ahead forecast of the DAX stock returns. According to table 1.6, 
Theil’s U-statistic is very close to 1, implying a poor out-of-sample forecast 
for all models.  

 

Table 1-6: Out-Of-Sample Forecasting Performance based on Theil’s U  
  Day-Ahead Random Walk     ARMA(5,3) GARCH(1,1) 

         5         .97          .96        .95 
        10         .95          .90        .91 
        15         .95          .88        .93 

 
Although the forecasting performance of ARMA and GARCH models 

is a little better than that of the random walk model, this criterion can’t 
determine whether they are in fact significantly better. A solution to this is to 
perform a Wilcoxon test between two alternative models. We use this test to 
compare the square errors of a random walk model and a rival model. The 
performance of the ARMA and GARCH models appeared to not differ 
significantly from a random walk model (with p-values more than .44).  
More specifically, the p-values of testing the ARMA model against the 
random walk was p=.72 and that of testing the GARCH model against the 
random walk was p=.44. Thus, there seems to be no significant difference 
between the models’ performance. The similar results are obtained for 
different sub samples and different rival models.  
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4- Conclusions 

The results of autocorrelation, variance ratio and autoregressive tests 
show that the DAX stock market follows a random walk and supports the 
weak-form efficiency of efficient market hypothesis (EMH). Our findings 
are consistent with the results of Ko and Lee (1991), who asserted that if the 
random walk hypothesis holds, then the weak-form efficiency must also 
hold, but not vice versa. Thus, evidence supporting the random walk model 
is the evidence of market efficiency. But violation of the random walk model 
need not be evidence of market inefficiency in the weak form1. 

Some ARMA models may be considered as a violation of informational 
efficiency, but not necessarily of the view of EMH which emphasizes the 
impossibility of making supernormal profits. Finally Theil’s inequality 
coefficient indicates a poor forecasting power for all models and there is no 
significant difference between the forecasting performance of rival models 
and that of random walk model based on Wilcoxon test. 

 

References 
1- Beechey M., Gruen D., and Vickery J. (2000-1) The Efficient Market 
Hypothesis: A Survey, Economic Research Department Reserve Bank of 
Australia, Research Discussion Paper. 
2- Campbell JY, Lo AW, and MacKinlay, AC (1997), The Econometrics of 
Financial Markets, Princeton University Press, Princeton, New Jersey. 
3- Cooray, A. (2003-05), The Random Walk Behaviour of Stock Prices: A 
Comparative Study, School of Economics, University of Tasmania, 
Australia, Discussion Paper. 
4- Cuthbertson K. (1996), Quantitative Financial Economics: stock, bonds, 
and foreign exchange, John Willy & Sons Inc. 
5- Darrat AF, Zhong M. (2000), On Testing the Random-Walk Hypothesis: 
A Model- Comparison Approach, The Financial Review, Vol. 35. 

                                                                                                                                            
1- In fact, the nature of linear and non-linear serial dependencies should be examined. The 
weak-form efficiency holds when the random walk hypothesis cannot be rejected by a non-
linearity test such as the BDS test. However, when the random walk hypothesis is instead 
rejected due to the presence of certain dependency structures, it can be concluded that the 
market is inefficient. 



94/ Weak- Form Efficiency in the German Stock Market 
 

6- Fama EF (1965), Random Walks in Stock Market Prices, Selected Papers, 
No. 16, Graduate School of Business University of Chicago. 
7- Ko KS, Lee SB (1991), “A Comparative Analysis of Daily Behavior of 
Stock Returns: Japan, The US and Asian NICs”, Journal of Business Finance 
and Accounting, Vol.18 (2), pp.219-234. 
8- Lo AW, Mackinlay AC (1988) Stock market prices do not follow random 
walks: evidence from a simple specification test, Review of Financial 
Studies, Vol. 1, pp.41-66. 
9- Mills TC (2000), The Econometric Modeling of Financial Time Series, 2. 
ed, Cambridge University Press. 
10- Higgins RC (1992), Analysis for Financial Management, McGraw-Hill. 
11- Sargent, T J (1993), Bounded Rationality in Macroeconomics: The Arne 
Ryde Memorial Lectures, Oxford University Press. 
12- Shadbolt J., Taylor JG (2002), Neural Networks and the Financial 
Markets, Springer. 
13- Tsay RS (2002), Analysis of Financial Time Series: Financial 
Econometrics, John Wiley & Sons, Inc. 
14- Z Bei, Q Zhong-ying (2006), Empirical Research on Efficiency of 

Chinese Future Markets based on GARCH Model, International Conference 

on Management Science and Engineering, ICMSE '06. 

 


