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Abstract 
he paper presents unified analytical solution for combining high-

frequency and low-frequency economic time-series by additive and 

proportional Denton methods with parametrical dependence on the 

initial values of variable and indicator in evident form. This solution 

spans Denton’s original and Cholette’s advanced benchmarking initial 

conditions as the subcases. Computational complexity of the obtained 

solution is associated with inversion of a square matrix of the order that 

is equal to the number of low-frequency observations available. 

Practical applying the proposed solution under data revisions allows to 

construct suboptimal concatenation of frozen and newly revised parts of 

benchmarked time-series by using the last benchmarked-to-indicator 

ratio (or benchmarked and indicator difference in additive case) from 

the range of data fixed as initial condition for benchmarking or re-

benchmarking the newly revised data by the proportional (or additive) 

Denton method. 

Keywords: Benchmarking of time-series, Denton methods, Lagrange 

multipliers, Movement preservation principle, Optimization problem.  
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1. An introduction 

In the wide sense, benchmarking is a procedure of combining high-

frequency and low-frequency economic data for the same flow variable into 

a consistent time-series. Benchmarking is implemented if high-frequency 

series and low-frequency series do demonstrate the inconsistent movements

in the usual cases when the less frequent data is assumed to be more reliable 

between two data sets under consideration (see Bloem et al., 2001). 

Let a be an ordered set of low-frequency (say, annual) flow data which 
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consists of K elements. Further, let q be an ordered T-element set of high-

frequency (say, quarterly or monthly) flow data, and let us assume that T=nK 

where n2 is a certain integer number (frequencies ratio). In other words, n 

is a number of subperiods (i.e. temporal units for high-frequency data) in one 

period (i.e. unit time interval for low-frequency data). Thus, one can 

consider benchmark time-series a and indicator time-series q as two column 

vectors of dimension K1 and T1, respectively. 

If these flow time-series show mutually consistent movements, then 

vectors q and a must satisfy the following intertemporal condition 

Sq a   (1) 

where K nS E e   is the rectangular matrix with dimensions KT which 

can be constructed by n-fold successive replication of each column from 

identity matrix KE  of order K, the character “” denotes the Kronecker 

product for two matrices, and ne  is a transpose of the summation column 

vector ne  of dimension n1 consisting of unit elements. 

Otherwise, if condition (1) is not met, then benchmarking is required to 

adjust high-frequency time-series q for a given benchmark vector a to the 

end that condition (1) would be satisfied. The adjusted time-series d can be 

represented either in additive form 

d q x   (2) 

or in additive-multiplicative form 

 T
ˆ ˆd q qy q e y     (3) 

where x and y are unknown T1-dimensional vectors of additive and 

proportional adjustments for forcing less reliable indicator time-series q to 

become more consistent with low-frequency data from a. Here, putting a 

“hat” over a vector’s symbol (or angled bracketing around it below) denotes 

a square matrix with the vector on its main diagonal and zeros elsewhere. 

Combining (2) and consistency condition (1) gives 

Sx a Sq  ,  (4) 

whereas combining (3) and (1) leads to 

ˆSqy a Sq  . (5) 

Thus, a general benchmarking problem is to find additive or proportional 

adjustments that provide a strict consistency of adjusted time-series d and a 

given benchmark vector a in the sense of requirements (4) or (5). 

 

2. The criterion basics for evaluation of the adjustments 

It is easy to see that systems of K linear Eqs. (4) and (5) contain T>K 

unknown variables each, so the sets of their feasible solutions are infinite. 
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Hence, a problem of the best choice on the infinite set of feasible 

adjustments x or y arises. 

The simplest way to determine the feasible adjustments is using of 

uniform and pro rata distributions. With a uniform distribution for additive 

case we have 

  n

1
x a Sq e

n
   . 

Note that inside any one of K periods the additive adjustments (elements of 

vector x) coincide with each other. It is easy to check that condition (4) is 

met. 

In turn, applying a pro rata distribution to additive-multiplicative case (3) 

leads to 

1

T ne y Sq a e


   . 

These proportional adjustments (elements of vector y) also coincide with 

each other inside of any one of K periods. It can be shown that obtained 

vector y satisfies the requirement (5). 

However, using uniform and pro rata distributions is likely to create a 

discontinuity in the growth rate from the last sub period of one period to the 

first sub period of the next period. This phenomenon is widely known in 

macroeconomic statistics as so-called “step problem”. Detailed and helpful 

discussion of the step problem one can find in Bloem et al. (2001). 

A natural way to avoid steps’ appearance in the adjusted high-frequency 

time-series d is provided by mathematical programming approach for 

choosing the adjustments that would preserve the short-term movements in 

high-frequency data as much as possible through period of observations. In 

the national accounting literature, this common notion is usually called 

“movement preservation principle”. The principle was originally developed 

by Denton (1971), who proposed a number of formal representations for 

movement preservation, including additive and proportional first difference 

Denton methods, which still are widely used in statistical practice (see 

Bloem et al., 2001). The various aspects of movement preservation 

principle’s formulation are comprehensively reviewed in Dagum and 

Cholette (2006). 

 

3. Objective functions in additive and proportional Denton methods 

For algebraic notation convenience, let us formally expand the vectors q, d, x, 

and y by attaching to them the initial scalar values associated with sub period 0 

before the range of observations available. It is important to emphasize that 

values q0, d0, 0 0 0x d q  , and 0 0 0y d q 1   are unknown a priori. 
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The objective function of additive first difference Denton method (needed 

to be minimized) can be written in a form of weighted quadratic variation for 

time-series d – q as 

(6) 

       
T2 2

a 0 0 1 1 1 0 0 t t t t 1 t 1
t 2

f (d; d q ) w d q d q w d q d q 


              
  

where the weights wt at t=1T are the relative reliability (relative confidence) 

factors for first differences of vector d – q. Here, the character “” between 

the lower and upper bounds of the index’s changing range means that the 

index sequentially runs all integer values in the specified range. Clearly, the 

objective function (6) specifies that the difference between the benchmarked 

time-series d and the indicator time-series q must be as constant as possible 

through observation period. 

Further, the objective function of proportional first difference Denton 

method (needed to be minimized) can be written as following weighted 

quadratic variation for element-wise ratio of time-series d and q: 

   
T

2 2

p 0 0 1 1 1 0 0 t t t t 1 t 1
t 2

f (d; d q ) w d q d q w d q d q 


    .  (7) 

Clearly, the objective (7) prescribes the ratio of benchmarked and 

indicator time-series to be as constant as possible through period of 

observations. 

It is easy to show that putting the additive pattern (2) into formula (6) or 

the additive-multiplicative pattern (3) into (7) gives the same formal result 

for both methods as follows: 

   
T

2 2

0 1 1 0 t t t 1
t 2

f (z; z ) w z z w z z 


      (8) 

where new unknown variable z and scalar parameter z0 coincide with x and x0 

for the additive Denton method and with y and y0 for the proportional Denton 

method, respectively. In new notation, the requirements (4) and (5) become 

Rz a Sq      (9) 

where new rectangular KT-dimensional matrix R coincides with matrix S 

for the additive Denton method and with matrix ˆSq  for the proportional 

Denton method.  

Thus, the generalized time-series benchmarking problem within Denton 

first difference approach is to minimize the unified quadratic objective 

function (8) subject to linear constraints (9). Note that objective function (8) 

depends on unknown scalar parameter z0 that is absent in vector  

 

Eq. (9). 
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4. Initial conditions for benchmarking of time-series 

The unified objective function (8) of variable z with parameter z0 can be 

written in matrix notation by two following ways: 

2
0 1 1 0 1 0f (z; z ) z Δ WΔz 2w z z w z      (10) 

and 

2 2
0 1 1 1 1 1 1 1 0 1 0f (z; z ) z Δ W Δ z w z 2w z z w z        (11) 

where W is nonsingular diagonal matrix of order T with weight (relative 

reliability) coefficient w ={wt t = 1T} on its main diagonal and W
1
 is its 

nonsingular square submatrix of order T–1 obtained by deleting the first 

column and the first row from matrix W. Normally vector w is assumed to 

be normalized by multiplying it on a proper factor, i.e., Te w 1  . Further, 

ij

1,   when  i j, j 1 T;             

Δ 1,  when  i j 1, j 1 (T 1);

0,   otherwise;                            

  


      



     

1 ij

1,  when  i j, j 1 (T 1);

Δ 1,   when  i j 1, j 2 T;

0,   otherwise;                      

    


    



 

where Δ  is nonsingular left (lower) two-diagonal matrix of order T with 

units on its main diagonal, and 1Δ  is rectangular two-diagonal matrix with 

dimensions (T–1)T obtained by deleting the first row from matrix . Note 

that the matrix of quadratic form in right-hand side of (10) is nondegenerate 

as a product of three invertible matrices. By contrast, the matrix of quadratic 

form in right-hand side of (11) with the same order T as a product of 

rectangular matrices with dimensions  T(T–1) and (T–1)T has non-full 

rank T–1. 

Before minimizing the unified objective function 0f (z; z )  subject to linear 

constraints (9) one needs to make a certain decision concerning a value of 

unknown parameter z0 . There are three various opportunities in this situation.  

Firstly, we can eliminate the last two summands in right-hand side of 

formula (10) by setting z0 equal to zero. The explanation is as follows: the 

point t=0 lies outside the observation (and benchmarking) period, so the 

statement 0 0d q  seems to be rather acceptable, from which

0 0 0x y z 0    (Recall that 0 0 0x d q   and 0 0 0y d q 1  ). This is a 

main notion of the original postulate developed by Denton (1971). Note that 

Denton initial condition 0z 0  appears to be quite operational because with 
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it the benchmarking problem becomes a “classical” minimization of 

nondegenerate quadratic form in (10) subject to linear constraints (9). 

However, using Denton initial condition generates an artificial bias in 

estimation of z1 and launches a spurious transient movement in the early part 

of benchmarked time-series (for details, see Dagum and Cholette, 2006). 

Secondly, we can consider unknown parameter z0 as an additional 

variable for unconstrained minimization of the unified objective function 

0f (z; z ) . Setting first partial derivative of the objective function (10) or (11) 

with respect to z0 equal to zero gives the simple equation 

1 1 1 02w z 2w z 0   , from which 0 1z z . This is a main idea of the Denton 

first difference approach’s modification developed by Cholette (1979) on a 

semi empirical background. It is easy to see that Cholette initial condition 

allows eliminating last three summands in right-hand side of formula (11). 

Hence, with this condition, the benchmarking problem becomes a 

constrained minimization of degenerate quadratic form in (11) so that a strict 

identifiability of its variables is achieved due to linear constraints (9) only. 

Nevertheless, using Cholette initial condition provides to avoid a main 

disadvantage of the original Denton condition - a spurious transient 

movement at the beginning of the time-series - which defeats the movement 

preservation principle. 

Thirdly, we can attempt to get an analytical solution of the constrained 

minimization problems (10) and (9) in evident form as a uniparametrical 

vector family depending on feasible values of z0. 

 

5. Analytical solution of the minimization problem for 

benchmarking of time-series 

The Lagrangean function for problem to minimize quadratic objective function 

(10) subject to linear constraints (9) with unknown scalar parameter z0 is 

 2
0 1 1 0 1 0L(z; z ,λ) z Δ WΔz 2w z z w z λ Rz Sq a          (12) 

where λ  is a vector of Lagrange multipliers with dimensions K1. By 

setting the partial derivatives of Lagrangean function with respect to z and λ  

equal to zero for finding its stationary point, we obtain the system of T+K 

linear equations 

1 02Δ WΔz R λ 2w z u   ,            Rz a Sq                                  (13) 

where u is the instrumental column vector of dimension T1 with unit first 

element and zeros in all other places. 

While symmetric matrix D Δ WΔ  of order T is invertible, as noted 

earlier, the first equation from this system can be resolved with respect to z as 
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1 1
1 0

1
z D R λ w z D u

2

   . 

Putting this expression into the second equation of (13) gives a linear 

estimate of Lagrange multipliers’ vector 

   
1

1 1
1 0λ 2 RD R a Sq w z RD u


    . 

After backward substitution into the first equation of (13), we obtain 

following analytical solution of the minimization problem (10), (9) 

depending on scalar parameter z0: 

   1 1 1 1 1
0 1 0 Tz (z ) D R M a Sq w z E D R M R D u            (14) 

where M is the symmetric matrix of order K, 1M RD R  , and ET denotes 

an identity matrix of order T. 

 

6. Algebraic transformation of the analytical solution 

In obtained analytical solution, there are two matrix inverses, namely matrix 

1D  of order T and matrix 1M  of order K. The further studying of the 

algebraic properties for symmetric matrix 
1 1 1D Δ W (Δ )     allows 

simplifying the expression (14). 

Clearly, an inverse of the left two-diagonal matrix Δ  of order T is a lower 

triangular matrix of the same order with unit nonzero elements, whereas an 

inverse of the right two-diagonal matrix Δ  is of course an upper triangular 

matrix. So it is easy to verify (see, e.g., Dagum and Cholette, 2006) that 

 1 1

ij
Δ (Δ ) min i, j   ,   i = 1T,  j = 1T. 

Because 1W  is diagonal matrix with reciprocal weights on its main 

diagonal, it can be shown that 

 min i, j
1 1 1 1

ij ij t 1 t

1
D Δ W (Δ )

w

   



   ,   i = 1T,  j = 1T.   (15) 

Thus, the calculations in accordance with analytical solution (14) do not 

require an inversion of matrix D with high order T = nK and come to the 

finding of the inverse 1M  of lower order K. Moreover, formula (15) allows 

simplifying the right-hand side of expression (14) because it is easy to see that  

1
T

1

1
D u e

w

  . 

Hence, after substitution of latter result, the analytical solution (14) of the 

minimization problem (10), (9) becomes 
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   1 1 1 1
0 0 T Tz (z ) D R M a Sq z e D R M Re         .  (16) 

It does not contain instrumental vector u and demonstrates a linear 

dependence of additive or proportional benchmarking adjustments z on 

initial scalar parameter z0. 

 

7. An incorporation of Denton initial condition to the analytical 

solution 

The Denton initial condition 0 0z  provides the simplest representation of 

the unified analytical solution (16) in a form of vector-valued linear function 

with the periodic discrepancy vector a Sq  as its main argument.  

As was noted above, rectangular KT-dimensional matrix R coincides 

with matrix S for the additive Denton method and with matrix ˆSq  for the 

proportional Denton method. Hence, 1 1M RD R SD S     in the first case, 

and 
1ˆ ˆM SqD qS   in the second case. Thus, under Denton initial condition 

the analytical solution (16) for additive method and for proportional method 

can be respectively written as 

   
0 0

1
1 1

a z 0 x 0z x D S SD S a Sq


  
      ,   (17) 

   
0 0

1
1 1

p z 0 y 0
ˆ ˆ ˆz y D qS SqD qS a Sq


  

       (18) 

where the inverse of matrix D is determined by formula (15). Note that 

computational complexity of both methods is equivalent to an inversion of a 

square matrix with order K < T. 

 

8. An incorporation of Cholette initial condition to the analytical 

solution 

In contrast to Denton initial condition, a handling of the Cholette initial 

condition 0 1z z  within the unified analytical solution (16) cannot be 

implemented directly. However, one can express scalar variable 1z  in terms 

of 0z  through multiplying both sides of . (16) by transposing T1-

dimensional instrumental vector u with unit first element and zeros 

elsewhere, which was introduced earlier in Section 5. For algebraic 

convenience, let us rewrite the expression (16) as  0 0z z g z h    where 

the vectors g and h with dimensions T1 can be easily determined from the 

right-hand side of (16). 

By defining vector u and according to Cholette initial condition, inner 

Eq
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product  0 1u z z z   should be equal to 0z . Thus, we get the scalar 

equation 0 0u g z u h  z  with one unknown 0z . Its root at u h 1   is 

0

u g
z

1 u h





  (19) 

where 

       1 1 1 1 1
T

t

1
u g u D R M a Sq D u R M a Sq e R M a Sq

w

    


          

, 

   1 1 1 1 1
T T T T T

t

1
u h u e D R M Re 1 D u R M Re 1 e R M Re

w

    


          

 

As a result, substitutions of the latter formulae into right-hand side of (19) 

give the desired value 

 1
T

0 1
T T

e R M a Sq
z

e R M Re





  


 
,  (20) 

which corresponds to the Cholette initial condition. 

For additive Denton method, we have 
1

aM SD S   and 

T T KRe Se ne  , whereas the proportional Denton method provides 

1
p

ˆ ˆM SqD qS   and T T
ˆRe Sqe Sq  . Thus, under Cholette initial condition 

0 1z z  the analytical solution (16) for additive method and for proportional 

method becomes 

(21) 

 
 

 0 1 0 1

1
K a1 1 1 1

a z z x x a T a K1
K a K

e M a Sq
z x D S M a Sq e nD S M e

ne M e


    

  

 
     


 

(22)

 
 

 
 0 1 0 1

1
p1 1 1 1

p z z x x p T p1
p

q S M a Sq
ˆ ˆz x D qS M a Sq e D qS M Sq

q S M Sq


    

  

  
     

 

 

respectively, where symmetric matrices aM  and pM  of order K are defined 

above, and the inverse of matrix D is determined by formula (15). Here, 

computational complexity of both methods is also associated with an 

inversion of a square matrix with order K < T, namely matrix aM  or pM . 

 

9. On idempotency of the considered benchmarking methods 

Computational procedures resembling the Denton methods are required to 

demonstrate an idempotent property to be well defined. This means that a 
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second applying the estimator (16) with a chosen initial value 0z  should 

keep invariable the current benchmarked time-series, for which the 

intertemporal condition (1) holds after first applying. 

It is easy to see that both the additive and proportional methods under 

Denton initial condition satisfy the imposed requirement because the 

analytical solutions (17) and (18) contain (as an efficient) the periodic 

discrepancy vector a Sq , which becomes a null (zero) vector after the first 

run of a method. 

In the case of Cholette initial condition, one can see a similar picture. The 

first summands and also the parameter values 0z  in analytical solutions (21) 

and (22) depend on the periodic discrepancy vector a Sq . Hence, the 

additive and proportional Denton methods with Cholette initial condition are 

idempotent too. 

From the brief analysis above, it becomes clear that an arbitrary choice of 

parameter value 0z  in unified estimator (16) can violate an idempotent 

property of a method. The most general approach to keep on an idempotency 

is to choose the parameter 0z  as a scalar function of vector a Sq  that 

vanishes at a Sq . Moreover, the most operational way is to restrict an 

existing variety of these function by the linear ones, i.e., to set  

 0z β a Sq    (23) 

where β  is a transpose of the certain column vector with dimensions K1 

that should be specified in advance. 

Function family (23) depicts a wide class of the modes for constructing 

the recursive base of additive and proportional Denton methods. Indeed, if 

vector β  is located on a hyperplane that is orthogonal to the periodic 

discrepancy vector a Sq  given, then 0z 0  as in the Denton initial 

condition. Further, by setting 
1 1

T T Tβ e R M e R M Re      , we obtain the 

formula (20) for the Cholette initial condition. 

It is appropriate to mention here that the other specifications of an 

instrumental vector β  generate a variety of initial conditions for flexible 

implementation of a benchmarking method subject to the requirements of its 

idempotency. It appears that this issue deserves further study.  

 

10. Practical applying the proposed benchmarking solutions 

under the data revisions 

One of the main questions concerning a practical use of Denton methods is 

how to apply them correctly in the circumstances of the recent data revisions 
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and the new data arrivals. Clearly, the revisions of the already benchmarked 

time-series for a few recent time periods generally violate the intertemporal 

condition (1) within these periods. As for new data just arrived, it is needed 

to be benchmarked in turn while keeping invariable the part of time-series 

that was benchmarked (and published) earlier. 

In the relevant literature devoted to the Denton and other benchmarking 

methods, one can find some misty recommendations as follows. “To avoid 

introducing distortions in the series, incorporation of new annual data for 

one year will generally require revision of previously published quarterly 

data for several years. This is a basic feature of all acceptable benchmarking 

methods” (see Bloem et al. 2001, par. 6.49). “When new data become 

available, benchmarking must be applied to all the available data, namely the 

past un-benchmarked series and the corresponding benchmarks, followed by 

the current un-benchmarked series and the newly available benchmark(s). 

Benchmarking must never be applied to an already benchmarked series 

followed by a segment of new data” (see Dagum and Cholette, 2006, p.10). 

From the quotations above, it is not quite clear what kind of the 

benchmarking initial conditions is better to be chosen and how it should be 

applied through the calculations. However, the proposed generalization of 

initial conditions in a form of the unified analytical solution (16) allows 

giving an explicit answer to this practically important question. 

Let us consider a dichotomy of the observation period between a range of 

fixed (say, already published) data t = 1 and a range of revising and/or 

new data t= (+1)T. The data from the first range are transformed earlier by 

a certain benchmarking method, so the indicator value q and the 

benchmarked value d in a border point t= are already known as well as the 

value of parameter z  which is equal to d q   for additive Denton method 

and d q 1    for proportional Denton method. Applying the estimator (16) 

with 0z z  to the revising and/or new data set at t= (+1)T allows 

smoothly concatenating both parts of (now fully benchmarked) high-

frequency time-series under consideration.  

A reasonable “pay” for the dichotomy is, of course, some increase of the 

quadratic variation (8) for the concatenated time-series compared to time-

series optimally benchmarked as a whole. Besides, note that an idempotency 

of this two-stage algorithm is provided by idempotency of the mentioned 

above “certain benchmarking method”, which is used on the first stage of the 

algorithm. Its second application leads to z 0  , and the estimator (16) used 

on the second stage of the algorithm becomes idempotent.  
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11. Lagrange multipliers and the solution sensitivity analysis 

It is assumed until now that the linear vector constraint (9) is binding, i.e., it 

should hold strictly. An impact following a refusal of the binding equality 

constraint can be measured using a technique of sensitivity analysis widely 

used in mathematical programming. 

From the optimization theory, it is known that Lagrange multipliers in the 

optimal solution of a mathematical programming problem with equality 

constraints are the components of the objective function’s gradient with 

respect to the right-hand sides of constraints at optimum point – for example, 

see Magnus and Neudecker (2007), pp. 160, 161. Note that in our study the 

right-hand side of constraint (9) is expressed in terms of the periodic 

discrepancy vector a Sq , and, moreover, for the proportional Denton 

method, the left-hand side of constraint (9) also depends on indicator time-

series q because of ˆR Sq  in this case. Thus, by Taylor’s expansion in a 

neighborhood of minimum point 0z (z )  we have 

 0

Rz
f (z ;z ) λ Rz Sq a λ a λ S q

q


 

 
               

. 

Therefore, the partial derivatives of the objective function (10) with respect 

to  and  at its minimum point are expressed as follows: 

0f (z ;z )
λ

a





,       0f (z ;z ) (Rz )

S λ
q q

   
     

. 

It is easy to see that for additive Denton method the partial derivative in the 

right-hand side vanishes, i.e. 

TK

(Rz ) (Sz )
0

q q

   
 

 
 

where TK0  is a TK-dimensional zero matrix. Further, for proportional 

Denton method the latter formula can be rewritten as 

ˆ ˆ(Rz ) (Sqz ) (Sz q)
ẑ S

q q q

  


    
  

  
 

where an obvious commutativity property of diagonal matrices is used. 

Finally, the partial derivatives of the objective function (10) with respect to a 

and q for additive and proportional Denton methods respectively become 

a a 0
a

f (z ;z )
λ

a





,          a a 0

a

f (z ;z )
S λ

q





;   (24) 

a q 
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p p 0
p

f (z ;z )
λ

a





,          p p 0

T p p

f (z ;z )
ˆE z S λ

q





 


  (25) 

where TE  is an identity matrix of order T. 

The vector of Lagrange multipliers for problem to minimize quadratic 

objective function (10) subject to linear constraints (9) with given scalar 

parameter z0 is derived like in Section 5. After the algebraic transformation 

considered in Section 6 this vector becomes 

 1 1
0 Tλ 2M a Sq 2z M Re     

where 1M RD R  , as earlier.  

In particular, for the additive Denton method we have T T KRe Se ne  , 

and so  

 1 1
a 0 Kλ 2M a Sq 2nz M e    .  (26) 

The proportional Denton method gives T T
ˆRe Sqe Sq  , hence, 

 1 1
p 0λ 2M a Sq 2z M Sq    . (27) 

It is important to emphasize that Lagrange multipliers (26) and (27) should 

be used in conjunction with two gradients (24) for additive Denton method 

and other two gradients (25) for proportional Denton method, respectively. 

A small shift in a space of vectors a or q along the anti-gradient defined 

by reversing a sign in (24) or (25) entails a small decrease of the quadratic 

variation (8) compared to its optimal value determined originally. In this 

context, the larger absolute values of anti-gradient’s elements are of great 

interest. Such sensitivity analysis allows detecting the elements of initial 

benchmark time-series a and indicator time-series q that serves as main 

sources of the movement preservation principle’s violation. 

 

12. Concluding remarks 

The unified analytical solution (16) demonstrates a high degree of flexibility 

while implementing the benchmarking calculations in statistical practice. 

Adaptive features of the developed approach are provided, firstly, by using a 

set of the relative reliability (weight) coefficients, secondly, by combining 

the additive and proportional Denton methods into a united algorithm, and, 

thirdly, by a flexible choice of the initial conditions within Denton’s 

benchmarking framework based on a movement preservation principle. 

Practical application of the proposed analytical solution in the 

circumstances of the recent data revisions and the new data arrivals allows 

constructing suboptimal concatenation of the fixed part and the newly 

revised part of benchmarked time-series by using the last value of scalar 
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parameter 0z  in estimator (16) from the range of data frozen as initial 

condition for benchmarking or re-benchmarking the newly revised data by 

the additive or proportional Denton method.  

Computing efficiency of the developed tools is quite high because 

associated calculations come to inversion of a square matrix of the order K 

that equals a number of observations in low-frequency data set available. 
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