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Abstract 
his paper proposes a new unit root test against the alternative of 

symmetric or asymmetric exponential smooth transition 

autoregressive (AESTAR) nonlinearity that accounts for multiple 

smooth breaks. We provide small sample properties which indicate the 

test statistics have good empirical size and power. Also, we compared 

small sample properties of the test statistics with Christopoulos and 

Leon-Ledesma (2010) test. The results indicate that our unit root test 

approach is superior to the test method of Christopoulos and Leon-

Ledesma (2010) for both transition parameters (i.e. slow and fast 

speed), and the test power increases along with the frequency. We apply 

our test statistics for examining the real interest rate parity hypothesis 

among OECD countries. 

Keywords: Unit Root, Asymmetry, ESTAR, Smooth Breaks, Real 

Interest Rate Parity. 

JEL Classifications: C22, G15. 

 

1. Introduction 

This paper develops a new unit root test to allow smooth breaks in the 

deterministic components and asymmetric nonlinear adjustment. We 

also extend the Sollis (2009) asymmetric exponential smooth 

transition autoregressive (AESTAR) nonlinear unit root with smooth 

breaks by means of a Fourier function.  The paper is to set out as 

follows. Section 2 introduces new unit root test and its construction of 
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critical values. Section 3 analyzes the properties of small samples. 

Section 4 provides an empirical application aiming at the real interest 

rate parity hypothesis (RIRPH), and final section concludes briefly.  

 

2. Unit Root Test and AESTAR Nonlinearity with Multiple 

Smooth Breaks 

Suppose that a series T

tty 1}{ 
 follows the data generating process 

(DGP) as 

 

t ty (t) ,     (1) 
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)(t  is a time-varying deterministic component.  In order to obtain 

a global approximation from the smooth transition and unknown 

number, and to equip deterministic components with breaks, we 

follow Gallant (1981) approach with employing the Fourier 

approximation and putting both terms of 
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 in the model is based on the fact that a Fourier expression 

is capable of approximating absolutely integrable functions to any 

desired degree of accuracy. Where k, T, and t are the number of 

frequencies of the Fourier function, sample size, and a trend term, 

respectively, and 3.1416π  .  Z is an optional exogenous regressor 

which consists of either a constant or a constant with trend term; n 

denotes the number of frequencies contained in the approximation, 

and it satisfies 
2

T
n  .   
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The estimation of equation (1) involves two parameters choice - the 

choice of n and the choice of k.  As noted by Becker et al. (2004), it is 

reasonable to restrict n=1 since joint null hypothesis of  s is rejected 

for one frequency (i.e., 0,2,1  kk  ), and time invariance hypothesis 

is also rejected. Similarly, Enders and Lee (2012) noted that the 

restriction n=1 is useful to save the degrees of freedom and prevents 

over-fitting problem.  Hence we re-specify equation (1) as follows: 

 

t t 1 2 t

2 kt 2 kt
y Z sin( ) cos( )

T T

 
         (2) 

 

where ],[ 21
   measures the amplitude and displacement of the 

frequency component.  Particularly the standard linear specification is 

a special case of equation (2) while setting 021  . There must be 

at least one of the both frequency components existed if a structural 

break is appeared. Becker et al. (2004) utilize this property of equation 

(2) to develop a more powerful test to detect structural breaks under 

an unknown form than Bai and Perron (2003) test. 

In determining an optimal k, we set the maximum of k equal to 5. 

For any K=k, we estimate equation (2) employing ordinary least 

squares (OLS) method and save the sum of squared residuals (SSR). 

Frequency k* is setting as optimum frequency at the minimum of 

SSR. With above assumption and respect to the deterministic 

components, we test the following null hypothesis: 

 

0 t t t t 1 tH : , u            (3) 

 

where tu is assumed to be an I(0) process with zero mean. To test the 

null hypothesis, we follow Christopoulos and Leon-Ledesma (2010) 

to calculate the statistic via three steps shown in following. 

First step: we set a maximum k equals to 5, and then find out 

optimal frequency of k* by employing the methodology described 

above.  We compute the OLS residuals as that: 
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t t
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Second step: a unit root on the OLS residuals given from equation 

(4) is tested by using AESTAR model. The AESTAR model combines 

exponential function and logistic function together, and it assumes the 

1
ˆ
t  as a transition variable to satisfy that 

(5) 
2
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To test the unit root null hypothesis, unlike the alternative 

hypothesis of globally stationary symmetric or asymmetric ESTAR 

nonlinearity with a unit root central regime, we follow Sollis (2009) 

model to test the null hypothesis H0: 01   in equation (5) and 

propose two Taylor approximations, in which one is for exponential 

function )ˆ,( 11  tt   around  ,01   and the other is for logistic 

function ).ˆ,( 12 ttS   We propose the following model: 

 

t 1 t 1

l
3 4
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We include terms 



l

i

iti

1

̂  to avoid autocorrelation with the error 

term t . The null hypothesis 0:H 10   in equation (5) becomes to 

test: 
 

0 1 2H : 0.          (7) 

 

As noted by Sollis (2009), it is not allowed to calculate the standard 

critical values to test null hypothesis H0: 01   in equation (5). 

Hence, this paper tries to compute the finite-sample critical values via 
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two alternative models. The first model is only assumed an intercept 

term in equation (2) (i.e., Z= [1]). The second model is equipped an 

intercept term with trend term (i.e., Z= [1,t]).  With setting k between 

1 to 5 and sample sizes included 100, 200, 300, and 500 observations, 

we compute asymptotic critical values by Monte Carlo simulation 

based on random walk model with pseudo-iid N(0,1) random number 

and 100,000 replications. The results of critical values are presented in 

Table 1. 

 

Table 1: Asymptotic Critical Values 

Sample 

size 
 

Model with intercept Model with intercept and trend 

k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

T=100 

10% 6.233 5.066 4.654 4.457 4.361 7.991 6.959 6.283 5.969 5.859 

5% 7.348 6.083 5.61 5.383 5.283 9.218 8.145 7.41 7.053 6.91 

1% 9.771 8.352 7.754 7.51 7.363 11.922 10.741 9.984 9.597 9.351 

T=200 

10% 6.321 5.141 4.723 4.55 4.424 8.102 7.044 6.373 6.069 5.94 

5% 7.415 6.146 5.683 5.469 5.322 9.282 8.207 7.501 7.152 7.001 

1% 9.735 8.436 7.871 7.568 7.396 11.85 10.741 9.941 9.521 9.296 

T=300 

10% 6.395 5.156 4.774 4.581 4.484 8.121 7.051 6.407 6.107 5.997 

5% 7.472 6.152 5.75 5.5 5.398 9.265 8.178 7.524 7.17 7.008 

1% 9.78 8.396 7.832 7.539 7.394 11.789 10.616 9.934 9.486 9.331 

T=500 

10% 6.427 5.204 4.775 4.584 4.495 8.161 7.097 6.425 6.149 5.998 

5% 7.48 6.193 5.732 5.496 5.396 9.346 8.24 7.563 7.208 7.036 

1% 9.768 8.324 7.825 7.539 7.403 11.832 10.691 9.933 9.555 9.382 

Note: Critical values were calculated using Monte Carlo experiment based on 

100,000 replications. 

 

When the null of unit root is rejected against the alternative of 

stationary symmetric or asymmetric ESTAR nonlinearity, we are able 

to test the null hypothesis of symmetric ESTAR nonlinearity by 

testing 0: 20 H  against 0: 21 H  with a standard F-test (T-test, 

or Lagrange Multiplier (LM) test).  

Third step: when the null hypothesis of unit root is rejected in the 

second step, we further test whether the nonlinear component in 

equation (2) is absent. Following Becker et al. (2006), we calculate the 

F-test statistic: 
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restricted unrestricted

unrestricted

(SSR SSR (k )) / 2
F(k ) ,

SSR (k ) / T q










    (8) 

 

where edunrestrictSSR  indicates the SSR with full regression equation (2) 

and restrictedSSR  is the SSR without   s from short regression under the 

cases of with and without nonlinear component, respectively. Due to 

the presence of nuisance parameter, the F-test statistic has no standard 

distribution. We thereby employ the critical values tabulated in Becker 

et al. (2006). 

 

3. Finite-Sample Size and Power Properties 

3.1 Finite-Sample Size 

Aiming at the test with a finite-sample size, we consider a following 

DGP: 

 

* *

t t 1 2 t

t t 1 t

2 k t 2 k t
y Z sin( ) cos( ) (9)

T T

t 1,2,...,T

 
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    

 

 

where )1,0(~ iidt , }1,1.0{21   , }3,2,1{* k , sample size 

}300,100{T , nominal size is 5%, and 10,000 replications. The 

values 0.1 and 1 for 1  and 
2  are related to an almost linear and 

nonlinear process respectively. The results are presented in Table 2, 

and all reported sizes for these DGPs are close to 5%. 

 

Table 2: Empirical Size of the Test Statistic 

Model Parameter 
T=100  T=300 

k=1 k=2 k=3  k=1 k=2 k=3 

Model with 

intercept 

1.021    0.050 0.051 0.047  0.048 0.047 0.046 

121    0.053 0.051 0.047  0.050 0.051 0.047 

Model with 

intercept and trend 

1.021    0.054 0.049 0.049  0.048 0.051 0.051 

121    0.052 0.048 0.051  0.050 0.050 0.046 

Note: Nominal size is at the 5% level. Number of replications is 10,000. 
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3.2. Finite-Sample Power 

To investigate the finite-sample power properties from the unit root 

test, unlike globally stationary process, we consider a following 

Fourier-AESTAR model as DGP: 

  
* *

t t 1 2 t

2
t t 1 t 1 t 1 t 2 t 1 1 t 2 t 1 2 t 1 t t

2
t 1 t 1 1 t 1 1

1
t 2 t 1 2 t 1 2

2 k t 2 k t
y Z sin( ) cos( ) (10)

T T

o o ( ,o ){S ( ,o ) (1 S ( ,o )) }o ; ~ iid(0, )

( ,o ) 1 exp( (o )) 0

S ( ,o ) [1 exp( (o ))] 0
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 


 

 
       

           

      

     

 

where all combinations of the parameters and frequencies values are 

specified to be that },3.0,1.0,05.0{1  },1,9.0,7.0,3.0,1.0,05.0{2   

},1,1.0{1  ,12  },1,1.0{21   {1,2,3},k*   ,iid(0,1)~ωt
 and 

T 300.  The values 0.1 and 1 with respect to 1η  indicate respectively 

slow and fast transition. The small 2  corresponds to symmetric ESTAR 

nonlinearity, and the small 1  linking with a big 2  generates the large 

degree of asymmetric ESTAR nonlinearity. 

In addition, we compare our test results with the finite-sample 

power with the unit root test developed by Christopoulos and Leon-

Ledesma (2010). We therefore calculate the critical values with the 

unit root test of Christopoulos and Leon-Ledesma (2010) for both 

models, in which one equipped only with intercept, and another 

contains both intercept and trend terms. The results are presented in 

Table 3. Clearly, the results indicate (a) our test statistic result is much 

better than the test model of Christopoulos and Leon-Ledesma (2010) 

in all cases, especially for the model with intercept and trend terms. 

(b) When the degree of asymmetry is large, our unit root test is 

becoming more powerful (almost 20% and 32%, respectively) than the 

model with both intercept and trend in Christopoulos and Leon-

Ledesma (2010).  Interestingly, we find that both unit root tests have 

equal power when symmetric ESTAR nonlinearity exists, and it 

thereby appears no substantive loss in power if our unit root test is 

substituted with the test of Christopoulos and Leon-Ledesma (2010).  
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In addition, the results also show that our unit root test approach is 

superior to the test method of  Christopoulos and Leon-Ledesma 

(2010) for both transition parameters (i.e. slow and fast speed), and 

the test power increases along with the frequency. 

 

4. Empirical Application 

In this section, we employ our test statistics to re-test the RIRPH 

among 12 OECD countries. We extend our data set, compared with 

the examination of Rapach and Wohar (2004), over the period from 

1960Q4 to 2012Q3. The nominal interest rate and CPI variables are 

collected from OECD Economic Indicators.  In order to test the 

RIRPH, we first calculate real interest rate and further use the U.S as 

benchmark country to compute the real interest rate differentials series 

according to the following equation (11): 

 
f f

t t t t t(i ) (i ) RID                  (11) 

 

where ti  and t  denote domestic nominal interest rate and inflation 

rates, respectively, and f
ti  and f

t  indicate respectively the U.S 

nominal interest rate and inflation rate. In next step, we test the unit 

root hypothesis aiming at the RID series with our test statistic when 

multiple smooth breaks are allowed in intercept model.  The empirical 

results are presented in the Table 4. The significant F statistic in the 

fourth column indicates that both sine and cosine terms should be 

included in the estimated model for all countries. Obviously, the joint 

null hypothesis of unit root test is rejected for all countries except for 

Canada.  Also, the results in column five show that the null of 

symmetric adjustment for the RID is rejected in Belgium, 

Netherlands, New Zealand, Norway, and UK.   

 

 





 

 

Table 3: Empirical Power Comparison at the 5% Nominal Level 

*

k  1   2  

Sollis-Fourier model  KSS-Fourier model (Christopoulos and Leon-Ledesma (2010)) 

Constant model  Constant & Trend model  Constant model  Constant & Trend model 

1 2     
1 2      1 2     

1 2      1 2     
1 2      1 2     

1 2     

0.1 1 0.1 1  0.1 1 0.1 1  0.1 1 0.1 1  0.1 1 0.1 1 

1 

-0.3 

-1 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  0.999 0.999 0.998 1.000 

-0.7 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  0.996 0.999 0.996 0.998 

-0.3 0.996 1.000 0.997 1.000  0.979 0.996 0.980 0.997  0.992 0.997 0.994 0.998  0.964 0.990 0.966 0.992 

-0.1 0.876 0.956 0.879 0.958  0.702 0.874 0.706 0.871  0.818 0.866 0.826 0.870  0.648 0.749 0.655 0.751 

-0.05 0.640 0.800 0.637 0.794  0.436 0.614 0.435 0.617  0.572 0.633 0.560 0.646  0.381 0.482 0.371 0.475 

-0.1 

-1 0.995 1.000 0.994 1.000  0.971 0.999 0.971 0.999  0.935 0.932 0.934 0.927  0.877 0.899 0.869 0.894 

-0.7 0.981 0.999 0.982 0.999  0.932 0.994 0.933 0.994  0.915 0.916 0.915 0.913  0.834 0.864 0.823 0.860 

-0.3 0.876 0.958 0.879 0.955  0.703 0.870 0.701 0.869  0.821 0.859 0.828 0.868  0.647 0.757 0.638 0.754 

-0.1 0.520 0.623 0.521 0.626  0.318 0.438 0.323 0.441  0.511 0.609 0.514 0.607  0.318 0.411 0.301 0.409 

-0.05 0.327 0.407 0.331 0.398  0.184 0.241 0.190 0.243  0.321 0.383 0.329 0.402  0.181 0.230 0.186 0.232 

-0.05 

-1 0.928 0.992 0.929 0.991  0.817 0.964 0.824 0.965  0.756 0.778 0.762 0.780  0.637 0.716 0.643 0.716 

-0.7 0.866 0.974 0.869 0.973  0.714 0.916 0.713 0.909  0.714 0.747 0.708 0.738  0.559 0.639 0.564 0.639 

-0.3 0.653 0.800 0.642 0.799  0.437 0.617 0.442 0.607  0.566 0.634 0.556 0.631  0.384 0.474 0.382 0.480 

-0.1 0.334 0.408 0.322 0.414  0.197 0.240 0.191 0.245  0.326 0.392 0.326 0.383  0.179 0.229 0.183 0.224 

-0.05 0.207 0.244 0.218 0.252  0.122 0.140 0.118 0.146  0.217 0.253 0.223 0.247  0.116 0.142 0.122 0.136 

2 

-0.3 

-1 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 0.999 1.000 

-0.7 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  0.999 0.999 0.998 0.999 

-0.3 0.999 1.000 0.999 1.000  0.993 0.999 0.991 0.999  0.998 1.000 0.998 0.999  0.987 0.996 0.985 0.996 

-0.1 0.958 0.988 0.959 0.986  0.831 0.936 0.825 0.936  0.914 0.921 0.907 0.924  0.767 0.846 0.767 0.842 

-0.05 0.804 0.904 0.800 0.905  0.575 0.753 0.585 0.747  0.711 0.755 0.714 0.752  0.516 0.606 0.516 0.606 

-0.1 

-1 0.999 1.000 0.999 1.000  0.988 1.000 0.987 1.000  0.966 0.957 0.963 0.958  0.920 0.925 0.922 0.931 

-0.7 0.997 1.000 0.996 1.000  0.969 0.998 0.968 0.999  0.954 0.948 0.955 0.946  0.896 0.906 0.897 0.907 

-0.3 0.958 0.985 0.961 0.987  0.828 0.936 0.817 0.939  0.912 0.926 0.908 0.924  0.773 0.841 0.766 0.843 

-0.1 0.721 0.801 0.725 0.794  0.465 0.568 0.463 0.580  0.705 0.771 0.707 0.762  0.453 0.556 0.458 0.564 
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Table 3: Empirical Power Comparison at the 5% Nominal Level 

*

k  1   2  

Sollis-Fourier model  KSS-Fourier model (Christopoulos and Leon-Ledesma (2010)) 

Constant model  Constant & Trend model  Constant model  Constant & Trend model 

1 2     
1 2      1 2     

1 2      1 2     
1 2      1 2     

1 2     

0.1 1 0.1 1  0.1 1 0.1 1  0.1 1 0.1 1  0.1 1 0.1 1 

-0.05 0.493 0.588 0.504 0.584  0.290 0.361 0.291 0.374  0.489 0.551 0.489 0.533  0.290 0.355 0.294 0.354 

-0.05 

-1 0.968 0.996 0.968 0.996  0.903 0.990 0.898 0.991  0.841 0.845 0.841 0.841  0.738 0.796 0.747 0.779 

-0.7 0.937 0.988 0.943 0.988  0.821 0.965 0.828 0.963  0.812 0.820 0.807 0.809  0.678 0.742 0.673 0.741 

-0.3 0.807 0.897 0.803 0.907  0.576 0.754 0.581 0.757  0.710 0.751 0.709 0.755  0.512 0.611 0.516 0.608 

-0.1 0.503 0.585 0.506 0.584  0.286 0.360 0.287 0.368  0.485 0.557 0.483 0.543  0.290 0.355 0.287 0.347 

-0.05 0.345 0.392 0.333 0.394  0.187 0.221 0.190 0.231  0.335 0.383 0.336 0.385  0.186 0.224 0.187 0.222 

3 

-0.3 

-1 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

-0.7 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  0.999 1.000 0.999 0.999 

-0.3 1.000 1.000 1.000 1.000  0.997 1.000 0.996 1.000  1.000 1.000 0.999 1.000  0.993 0.998 0.993 0.998 

-0.1 0.975 0.990 0.976 0.992  0.883 0.958 0.886 0.960  0.934 0.945 0.936 0.945  0.844 0.881 0.836 0.883 

-0.05 0.854 0.929 0.847 0.927  0.650 0.809 0.653 0.808  0.763 0.788 0.754 0.783  0.582 0.671 0.595 0.671 

-0.1 

-1 0.999 1.000 0.999 1.000  0.995 1.000 0.994 1.000  0.973 0.966 0.977 0.966  0.941 0.937 0.942 0.946 

-0.7 0.998 1.000 0.998 1.000  0.984 0.999 0.981 0.999  0.967 0.958 0.965 0.962  0.923 0.934 0.926 0.925 

-0.3 0.975 0.991 0.973 0.992  0.880 0.959 0.879 0.963  0.940 0.940 0.943 0.946  0.837 0.882 0.835 0.883 

-0.1 0.778 0.837 0.780 0.835  0.541 0.655 0.542 0.658  0.765 0.817 0.763 0.813  0.541 0.646 0.539 0.641 

-0.05 0.544 0.630 0.562 0.632  0.342 0.422 0.342 0.423  0.551 0.605 0.548 0.602  0.340 0.416 0.337 0.414 

-0.05 

-1 0.981 0.998 0.981 0.998  0.926 0.992 0.930 0.992  0.862 0.857 0.862 0.861  0.783 0.812 0.788 0.814 

-0.7 0.960 0.992 0.959 0.992  0.863 0.974 0.871 0.974  0.838 0.837 0.832 0.841  0.730 0.775 0.738 0.778 

-0.3 0.852 0.937 0.851 0.933  0.648 0.806 0.655 0.811  0.761 0.783 0.763 0.783  0.595 0.661 0.582 0.669 

-0.1 0.547 0.638 0.552 0.632  0.337 0.424 0.345 0.425  0.550 0.608 0.535 0.603  0.338 0.411 0.341 0.415 

-0.05 0.355 0.415 0.349 0.423  0.212 0.260 0.214 0.263  0.379 0.420 0.364 0.425  0.222 0.267 0.214 0.262 

Note: Empirical power were calculated using Monte Carlo experiment based on 10,000 replications and T=300. 
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Table 4: Empirical Results for RIRPH 

Country 
Optimum    

frequency 

Optimum    

lag 

F-test 

statistic 0 2H : 0 
 

0 1 2H : 0     

Australia 1 4 26.461 -0.72 8.651* 

Belgium 5 8 38.651 3.299** 10.968*** 

Canada 2 5 18.69 1.411 4.445 

Denmark 1 4 39.595 1.116 6.488* 

France 1 1 20.115 -1.358 12.262*** 

Ireland 3 4 26.328 0.514 19.773*** 

Italy 4 4 24.409 0.378 15.66*** 

Netherlands 5 8 16.267 3.692** 11.021*** 

New Zealand 1 6 90.656 -2.328** 7.300* 

Norway 1 4 28.669 3.279** 10.478*** 

Switzerland 5 6 19.942 -1.453 6.441*** 

United Kingdom 4 6 12.36 -2.96** 9.765*** 

Note: The optimum lag order selected based on the recursive t-statistic. ***, ** and 

* indicate the null hypothesis is rejected at the 1%, 5% and 10% levels, respectively.  

 

5. Conclusion 

In this paper, we generalize the Sollis (2009) AESTAR nonlinear unit 

root test with allowing multiple smooth temporary breaks by 

calculating means in Fourier function.  The simulation results of 

Monte Carlo studies also show that our empirical test approach is 

more reliable and its test statistic is much powerful. Lastly, we further 

employ our test to examine the real interest rate parity hypothesis over 

12 OECD countries and find that the RID series are short-lived, 

nonlinear mean reversing with multiple smooth breaks, and some 

adjustments deviated from equilibrium are asymmetrical.         
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