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Abstract 

The threat of air pollution in the form of fine particulate matter (PM2.5) has been 

increasingly becoming serious around the world. To address this problem, an accurate 

understanding of its determinants is needed. This study investigates the impact of both 

natural and socioeconomic factors on PM2.5 concentrations in the United States (US). To 

this end, we apply an ARDL bounds testing approach using monthly data over the period 

from 2000 to 2021. Our findings support the existence of long-run relationship among the 

variables. Further, the results suggest that, in both the long and short term, energy 

consumption worsened PM2.5 pollution. However, there exists an inverse relationship 

between economic growth and PM2.5 concentrations only in the long term, which 

contrasts with what was found in the short term. Besides, industrialization exerts a 

negative impact on PM2.5 concentrations only in the short term. Regarding the natural 

factors, the results provide significant evidence that wind speed mitigates PM2.5 

concentration contrary to temperature. However, no significant impact exists for 

precipitation and relative humidity. The results of Toda-Yamamoto causality test indicate 

the presence of a unidirectional causality running from economic growth and energy 

consumption to PM2.5 concentration at 5% significance level, and from industrialization 

and wind speed to PM2.5 at the 10% significance level. In light of these findings, some 

policy implications are recommended for U.S. policymakers. 

Keywords: ARDL Model, Causality Test, Meteorological Conditions, PM2.5 

Concentrations, Socioeconomic Factors. 

JEL Classification: C1, C5, O1, Q5.  
 

 

1. Introduction 

Clean air is essential for human comfort, health and well-being (Luo et al., 2017). 

However, in recent decades, the development of the world economy has led to a 

series of environmental issues, particularly air pollution, which has increasingly 
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become a serious hazard. In fact, almost all of the global population (99%) lives in 

places where the air quality does not reach the WHO criteria (WHO, 2022). The 

harmful impacts of air pollution have made it a hotspot of both public interest and 

scientific research. Particulate matter (PM) is widely considered as a major 

component of air pollution. Amongst PM, PM2.5, which is fine particulate matter 

with an aerodynamic diameter of less than 2.5 µm, is particularly important as it 

may present a higher risk to human health compared to PM10 (particles with an 

aerodynamic diameter of fewer than 10 µm) (Abd Aziz et al., 2018). Indeed, it has 

been recognized as a Group 1 carcinogen by the International Agency for Research 

on Cancer (IARC) and the World Health Organization (WHO) (Hamra et al., 2014) 

due to its adverse effects on humans. The robust connection between ambient 

PM2.5 concentrations and human health has been confirmed by epidemiological 

studies.  

Researchers have confirmed that exposure to particulate pollution has been 

associated with increased risks of lung cancer, cardiovascular disease mortality, 

kidney disease risk, and ischemic heart disease mortality (Pope et al., 2011; Bowe 

et al., 2017; Thurston et al., 2016). More dangerously, according to the Global 

Burden of Disease study, ambient PM2.5 was the fifth leading risk factor for 

mortality in 2015, causing 4.2 million deaths, or 7.6% of total deaths worldwide 

(Cohen et al., 2017), which shows that PM2.5 is a truly global threat and not a 

simply regional air pollution issue. Not only does air pollution poses a severe threat 

to human health, but also negatively impacts sustainable development; indeed, 

according to the Organization for Economic Cooperation and Development 

(OECD), air pollution could lead to 6 to 9 million premature deaths per year by 

2060 and cost 1% of global GDP (OECD, 2016). Hence, the attention of 

researchers is turning more and more toward PM2.5mitigation issues.  

Considering the seriousness of PM2.5 pollution and the urgent necessity to 

implement efficient abatement policies, numerous studies have been dedicated to 

the identification of the factors driving PM2.5 concentrations, and further research 

is ongoing in this area. It has indeed been empirically found that natural factors 

such as meteorological conditions, vegetation coverage, and topography influence 

PM2.5 concentrations (Luo et al., 2017). Among these influencing factors, 

meteorological conditions are among of the most essential factors as they can affect 

PM2.5 concentrations via diffusion and dilution capacities (Liu et al., 2020). 

Therefore, a more reliable and comprehensive understanding of the PM2.5 

pollution problem can be achieved by taking meteorological factors into account 

(Yang et al., 2017). However, in addition to these conditions, it is crucial to 



 
 
 
 

907                               Iranian Economic Review, 2025, 29(3) 
 

emphasize that PM2.5 pollution is not only a natural phenomenon, but additionally 

it is a man-made one resulting from human socio-economic activities (e.g., energy 

consumption, population growth, economic development) (Ji et al., 2018), that has 

been the dominant factor as PM2.5 is mainly originated from the combustion of 

fuels such as wood, coal, oil, and the emission of motor vehicle exhaust (Shou et 

al., 2019).  

Briefly, the factors that impact PM2.5 concentrations involve socioeconomic 

and natural conditions. Nevertheless, there is a lack of extensive research on their 

joint influences, as researchers generally focus on one-sided factors such as either 

natural or socioeconomic factors. Using only one perspective can result in 

inaccurate analytical results. Thus, to better assess the influencing factors on 

PM2.5 mitigation, both natural and socioeconomic factors were considered and 

interpreted in this study. It may also be noted that most studies are mainly 

conducted at the scale of a city within a country (Chen el al., 2018) or a few large 

cities around the world (Han et al., 2016). Research on PM2.5 concentrations has 

rarely been performed at a country scale. Furthermore, many studies have focused 

on heavily polluted developing countries, such as China (Zhang et al., 2019; Zhou 

et al., 2018), while only a few have included developed economies.  

To achieve the above objectives, this study uses the United States (US). The 

US presents an interesting case study since it is the largest consumer of primary 

energy in the world, with a 15.8% share in 2020 (BP, 2021). Moreover, it is one of 

the developed economies where per capita fossil fuel consumption is 60,167 kWh 

in 2020, which keeps the United States in the first place, followed by China, 23,674 

kWh (4th), and India, 5,7888 kWh (9th)1. Keeping that in mind, the U.S. case needs 

to be thoroughly examined to ensure its environmental future by effectively 

controlling air pollution through a combination of diligent scientific research and 

reasonable policy implementation. Therefore, it will be useful to understand the 

factors that contribute to PM2.5 pollution. 

As a matter of fact, the purpose of this paper is to determine the impact of 

socioeconomic and meteorological factors on PM2.5concentration, over the period 

January 2000 to December 2021. To the best of our knowledge, the impact of 

socioeconomic and natural factors on PM2.5 pollution has not been tackled jointly 

in the case of the United States. We aim to make the two following contributions 

to the literature: first, we extend the study to the country level, whereas previous 

research has been primarily limited to the city level, and second, we provide an 

 
1. Retrieved from here.  

https://ourworldindata.org/grapher/fossil-fuels-per-capita
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empirical analysis of a developed economy in which we determine the links 

between socioeconomic, meteorological, and PM2.5 concentration factors. Given 

that many developing countries are adopting the strategies and policies of 

developed countries like the United States, the challenges facing the U.S. 

economy, therefore, merit detailed study.  

The remainder of this paper is organized as follows. Section 2 presents a 

brief review of the literature. While Section 3 discusses the data and 

methodological framework. Empirical results and discussions are presented in 

Section 4, while the final section draws the conclusion of our empirical research 

and provides some policy recommendations. 

 

2. Literature Review 

So as to enhance environmental quality, it is necessary to identify the main 

influencing factors responsible for air quality deterioration. A growing body of 

literature has devoted considerable effort to analyzing the factors leading to the 

increase of PM2.5 levels, given their severity and the urgent need for effective 

mitigation measures. This literature can be divided into two categories: studies on 

socioeconomic factors and studies on meteorological conditions. 

 

2.1 Socioeconomic Factors 

For many years, exploring the relationship between economic growth and 

environmental quality has always piqued the interest of researchers. Literature on 

the subject is voluminous and continues to grow. Many of them use the 

Environmental Kuznets Curve (EKC) model as the primary empirical framework. 

The EKC hypothesis was first proposed by Grossman et al. (1991), their major 

conclusion was that pollution increases with an increase in revenues in the early 

stages of economic development and then decreases at higher levels of income in 

the later stages of economic development. As stated above, at higher income levels, 

people begin to attach more importance to the environment. In other words, only 

wealthy societies can afford to be concerned about environmental issues; poor 

societies must devote most of their resources to necessities (Baldwin, 1995). 

Borhan et al. (2012) examined the impact of GDP on pollution in ASEAN 8 

using data from 1965 to 2010, and discovered that as GDP rises, pollutant 

emissions rise first, but once GDP reaches a certain level, pollutant emissions begin 

to decline. As we can see, a country's economic level has a major impact on 

polluting emissions. 
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Industrialization and energy consumption were also a major driver of 

environmental degradation that had attracted attention in the empirical literature. 

For example, Zhao et al. (2018) investigated the relationship between GDP per 

capita, energy consumption, urbanization process, industrialization structure, and 

the amount of possession of civil vehicles and PM2.5 concentrations, over 1998 to 

2016, using the auto-regressive distributed lag (ARDL) approach. The findings 

support the evidence that GDP per capita was the greatest factor affecting PM2.5, 

followed by total energy consumption, urbanization, industrialization activity, and 

the amount of ownership of civil vehicles.  

Li et al. (2016) used a panel data model to investigate the effect of economic 

growth, urbanization, and industrialization on PM2.5 concentrations in China at 

the prefecture-level from 1999 to 2011. The findings indicated that 

industrialization was the most important factor influencing PM2.5 concentrations 

in the total panel, the industry-oriented panel, and the service-oriented panel. A 

study also conducted by (Chen el al., 2018) has examined the relationship between 

energy consumption, energy intensity, economic growth, urbanization, and PM2.5 

concentrations by categorizing countries into four panels based on income levels. 

The empirical outcomes evidenced that energy consumption was the most 

important factor influencing PM2.5 concentrations in lower-middle-income and 

low-income countries. Furthermore, recent studies, such as this by Xu et al. (2019) 

examined the socioeconomic determinants driving the observed spatiotemporal 

variations in air quality using the Air Pollution Index (API) and Air Quality Index 

(AQI). API is based on SO2, NO2, and PM10, whereas AQI is based on six 

atmospheric pollutants, which include SO2, NO2, PM10, PM2.5, CO, and O3. 

They found out that vehicle volume, energy consumption, secondary sector 

proportion, and GDP per capita all have contributed to significant rises in air 

pollution. Population growth has also been identified as a cause of environmental 

problems since Malthus (1798) made the link, and the matter has been debated 

since. Population growth raises demand for land, food, transportation, energy, 

natural resources, and environmental infrastructure, which may intensify human 

and socioeconomic activities, contributing to ambient air pollution (Sarkodie et al., 

2019). In general, research on air quality and population reveals that population is 

positively associated with air pollution, but the association holds only for some 

examined pollutants and not others (Cramer, 1998; Cramer and Cheney, 2000; 

Cole and Neumayer, 2004).   

 Previous studies have documented that population is positively associated 

with PM2.5. For example, Lou et al. (2016) showed that population density was a 
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particularly important factor that had the potential to influence the accumulation 

of PM2.5. Indeed, a 1% increase in population density can result in a 0.214% 

increase in the daily growth rate of PM2.5. Lou et al. (2016) and Fang and Yu 

(2021), also have found that PM2.5 pollution is higher in more populated cities due 

to life and production activities and their relationship to emissions of polluting 

gases. It is therefore understood that higher population levels lead to higher energy 

consumption and higher emission. 

 

2.2 Meteorological Factors 

In addition to socioeconomic factors, meteorological factors also have a 

statistically significant impact on PM2.5 pollution as they can contribute to at least 

a 16% decrease in PM2.5 levels (Yang et al., 2011). To date, many studies have 

been conducted on the relationships between PM2.5 concentration and 

meteorological conditions. For instance, Pateraki et al. (2012) also showed that the 

concentration of PM2.5increased with the increase of air temperature. Moreover, 

other empirical studies observed that wind speed contributed to diluting pollutant 

concentrations in the air by carrying airborne particles into the atmosphere in 

parallel with nearby cities. The higher the wind speed, the better the quality of 

urban air. Similarly, Zhang et al. (2016) found also that precipitation was 

conducive to facilitate the dispersion of air pollutants and had a significant negative 

effect on PM2.5 pollution. Chen et al. (2018c) analyzed the impact of 

meteorological factors on local PM2.5 concentrations in 188 monitoring cities 

across China and showed that meteorological effects on PM2.5 concentrations 

exhibit significant seasonal and regional variations. According to Bai et al. (2019) 

relative humidity has a positive effect on air pollution, which indicates that the 

higher the relative humidity, the lower the air quality. In addition, Jing et al. (2020) 

found that temperature was the main impacting factor throughout the whole year, 

as it can explain 27% of PM2.5 concentrations.  

Recently, Cifuentes et al. (2021) found that the use of only meteorological 

variables does not represent the variation of hourly concentrations of PM2.5, since 

this pollutant is related with on-road sources emissions. Similarly, Park et al. 

(2021) noticed that meteorological conditions (i.e., wind and turbulent motion at 

the surface) were vulnerable to PM2.5 concentrations. Further, considerably 

decreased PM2.5 pollutants were mostly affected by synoptic rather than local 

conditions. Li et al. (2021) showed that the synoptic pattern and topography can 

affect PM2.5 concentration in Northeast China.  
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More recently, Gao et al. (2022) revealed that the level of PM2.5 exhibits 

considerable seasonal discrepancies in PM2.5 concentration and its variations. 

Further, they noted that the aerosol optical thickness corrected for humidity, and 

the relative humidity in the atmosphere exhibits a high effect on PM2.5 

concentration. 

 

3. Data and Methodology  

3.1 Data 

Socioeconomic and meteorological factors were both considered to identify the 

determinants of PM2.5. Our data are composed of monthly time series covering 

the period from January 2000 to December 2021 with a total of 264 observations 

for each variable. Daily PM2.5 concentrations were aggregated to monthly 

averages and used as a proxy to measure environmental quality. For socio-

economic factors, given the availability of data and previous research, real gross 

domestic product, industrial production index, and total primary energy 

consumption were ultimately selected for inclusion in the study. We selected 

temperature, precipitation, relative humidity, and wind speed as meteorological 

variables. All the meteorological and socioeconomic indicators and their 

descriptions are presented in Table 1. 

 

Table 1. The Description of Variables 

Variable Symbol Measurement Source 

Dependent variable    

Air pollution PM2.5 Particulate matter (PM2.5) (µg/m³) EPA 

Independent Variables    

Economic growth EG 
Real gross domestic product (Chained 

2012 USD) 
YCharts 

Energy consumption EC 
Total primary energy consumption 

(Quadrillion Btu) 
EIA 

Industrialization IPI Industrial production index FRED 

Precipitation Precip Mm NASA 

Relative humidity RH kPa NASA 

Temperature Temp ℃ NASA 

Wind speed WS m/s NASA 

Note: EPA= Environmental Protection Agency, EIA= Energy Information 

Administration, FRED= Federal Reserve Bank of St. Louis, NASA= NASA POWER Data 

Access Viewer. Sources: EPA, YCharts, EIA, FRED and NASA. 
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3.2 Methodology 

The empirical analysis is principally based on the ARDL model and the causality 

test of Toda and Yamamoto (1995), however, prior to the estimation of the models, 

we begin by investigation the integration proprieties of the variables under 

consideration. 

 

3.2.1 Stationarity Analysis  

The stationarity test is a prerequisite for time series analysis, as it prevents spurious 

regression problems. Hence, the unit root was first examined using the Augmented 

Dickey and Fuller (ADF), the Phillips and Perron (PP), and Kwiatkowski Phillips 

Schmidt and Shin (KPSS) tests. 

 

3.2.2 ARDL Model 

To assess the short-run and long-run relationship between PM2.5 and the 

independent variables, the Autoregressive Distributed Lags (ARDL) model was 

used in this study. Two key contributions in this context are Pesaran and Shin 

(1999) and Pesaran et al. (2001). The ARDL method has been extensively utilized 

as it provides several advantages over traditional statistical methods for assessing 

cointegration and short/long-term relationships. There are different cointegration 

methods given in the literature (Engle and Granger, 2015; Johansen and Juselius, 

1990; Johansen, 1991). Although these studies make a significant contribution to 

the body of research on cointegration or long-run equilibrium relationships, their 

application remains limited. For example, the Engle and Granger test is only used 

for two variables, and these must be integrated in the same order, which makes it 

unusable for multivariate cases.   

In this regard, the ARDL bounds testing approach proposed by Pesaran et al. 

(2001) was adopted to address these shortcomings and verify cointegration. This 

approach can be utilized to test for a level relationship for variables that are either 

I(0) or I(1) or a combination of both. This allows us to overcome the pre-testing 

problems associated with the standard cointegration analysis that requires the 

classification of the variables into I(0) and I(1). Nevertheless, ARDL cannot be 

used with non-stationary variables integrated of order two I(2). Moreover, 

compared to conventional cointegration approaches, it is possible to set various 

lags for each of the variables in the model (Pesaran et al., 2001), making it more 

flexible. Besides, the majority of cointegration techniques are sensitive to sample 

size, but the ARDL technique provides consistent and robust outcomes for small 

sample sizes (Pesaran and Shin, 1999; Pesaran et al., 2001). 
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To apply the bound test procedure, the following ARDL will be estimated to 

find the cointegration relationship between PM2.5, EG, EC, IPI, Precip, RH, Temp 

and WS. We specify the following unrestricted error correction models (UECM): 

∆𝑃𝑀2.5𝑡 =  λ0 + 𝜃1𝑃𝑀2.5𝑡−1 + 𝜃2𝐸𝐺𝑡−1 + 𝜃3𝐸𝐶𝑡−1

+ 𝜃4𝐼𝑃𝐼𝑡−1 + 𝜃5𝑃𝑟𝑒𝑐𝑖𝑝𝑡−1 + 𝜃6𝑅𝐻𝑡−1

+ 𝜃7𝑇𝑒𝑚𝑝𝑡−1 + 𝜃8𝑊𝑆𝑡−1 + ∑ 𝛼1i

𝑝

𝑖=1

∆𝑃𝑀2.5𝑡−𝑖

+ ∑ 𝛼2i

𝑞

𝑖=0

∆𝐸𝐺𝑡−𝑖 + ∑ 𝛼3i

𝑟

𝑖=0

∆𝐸𝐶𝑡−𝑖

+ ∑ 𝛼4i

𝑠

𝑖=0

∆𝐼𝑃𝐼𝑡−𝑖 + ∑ 𝛼5i

𝑡

𝑖=0

∆𝑃𝑟𝑒𝑐𝑖𝑝𝑡−𝑖

+ ∑ 𝛼6i

𝑢

𝑖=0

∆𝑅𝐻𝑡−𝑖 + ∑ 𝛼7i

𝑣

𝑖=0

∆𝑇𝑒𝑚𝑝𝑡−𝑖

+ ∑ 𝛼8i

𝑤

𝑖=0

∆𝑊𝑆𝑡−𝑖 +  Ɛ𝑡 

 

(1) 

where: the variables are all specified as before; Δ designates the first difference 

operator; λ0 is the intercept; Ɛt is the stochastic error term; the summation signs 

denote the short-term dynamics; θi represents the long-run coefficients; p, q, r, s, 

t, u, v and w denote the optimal lags. The optimum lagged orders of equation (1) 

were chosen based on the Akaike Information Criterion (AIC).  

Having estimated equation (1), we now proceed to identify the existence of 

the long-run relationship between the variables. The ARDL boundary test 

approach is based on the F-test values which consists of critical values of the lower 

and upper bounds, I(0) and I(1) respectively, founded on the following null and 

alternative hypothesis. 

𝐻0: 𝜃1 =  𝜃2 =  𝜃3 =  𝜃4 =  𝜃5 =  𝜃6 =  𝜃7 =  𝜃8 =  0  

(No levels relationship) 

 
𝐻1:  𝜃1 ≠  𝜃2 ≠  𝜃3 ≠  𝜃4 ≠  𝜃5 ≠  𝜃6 ≠  𝜃7 ≠  𝜃8 ≠  0  

(Evidence of levels relationship) 
 

The null hypothesis of no cointegration is rejected if the calculated F-statistic 

surpasses the upper critical bounds or accepted if the F-statistic falls under the 
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lower critical bounds. However, if the F statistics is in-between the upper bound 

and lower bound critical value then, the decision is inconclusive. Thus, it is 

necessary to know more about the order of integration of the variables before 

making a conclusive inference (Pesaran et al., 2001). Once the long run 

relationship between PM2.5 and the independent variables is confirmed, the next 

stage requires the estimation of the long run model described in equation (2). 

𝑃𝑀2.5𝑡 = λ0 + ∑ 𝜃1𝑖𝑃𝑀2.5𝑡−𝑖

𝑝

𝑖=1

+  ∑ 𝜃2𝑖𝐸𝐺𝑡−𝑖

𝑞

𝑖=0

+ ∑ 𝜃3𝑖𝐸𝐶𝑡−𝑖

𝑟

𝑖=0

+ ∑ 𝜃4𝑖𝐼𝑃𝐼𝑡−𝑖

𝑠

𝑖=0

+ ∑ 𝜃5𝑖∆𝑃𝑟𝑒𝑐𝑖𝑝𝑡−𝑖

𝑡

𝑖=0

+ ∑ 𝜃6𝑖∆𝑅𝐻𝑡−𝑖

𝑢

𝑖=0

+ ∑ 𝜃7𝑖∆𝑇𝑒𝑚𝑝𝑡−𝑖

𝑣

𝑖=0

+ ∑ 𝜃8𝑖∆𝑊𝑆𝑡−𝑖

𝑤

𝑖=0

 +  Ɛ𝑡 

 

(2) 

Finally, the Error Correction Model is given below (equation 3), where ∆ 

indicates the first difference operator and the ECMt-1 and δ1 denote the error 

correction term and the speed of adjustment in long-run equilibrium after short-run 

shocks, respectively. The ECT must be negative and significant to affirm the long-

run relationship among the variables. 

∆𝑃𝑀2.5𝑡 = 𝜓0 + 𝛿1𝐸𝐶𝑀𝑡−1 + ∑ 𝛼1𝑖∆𝑃𝑀2.5𝑡−𝑖

𝑝

𝑖=1

+  ∑ 𝛼2𝑖∆𝐸𝐺𝑡−𝑖

𝑞

𝑖=0

+ ∑ 𝛼3𝑖∆𝐸𝐶𝑡−𝑖

𝑟

𝑖=0

+ ∑ 𝛼4𝑖∆𝐼𝑃𝐼𝑡−𝑖

𝑠

𝑖=0

+ ∑ 𝛼5𝑖∆𝑃𝑟𝑒𝑐𝑖𝑝𝑡−𝑖

𝑡

𝑖=0

+ ∑ 𝛼6𝑖∆𝑅𝐻𝑡−𝑖

𝑢

𝑖=0

+ ∑ 𝛼7𝑖∆𝑇𝑒𝑚𝑝𝑡−𝑖

𝑣

𝑖=0

+ ∑ 𝛼8𝑖∆𝑊𝑆𝑡−𝑖

𝑤

𝑖=0

+  Ɛ𝑡 

(3) 
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3.2.3 Diagnostic Tests 

Different testing methods have been implemented to measure the consistency of 

the ARDL model and the reliability of its results. The stability of the model will 

be determined by the cumulative sum (CUSUM) and cumulative sum of squares 

(CUSUMSQ) tests, which were both proposed by Brown et al. (1975).  

Furthermore, the functional form will be determined by the Ramsey Regression 

Specification Error Test (RESET) (Ramsey, 1969) which tests if non-linear 

combinations of the fitted values can describe the explanatory variable under the 

null hypothesis that, the model is correctly specified. We will also use the Breusch-

Godfrey LM serial correlation for autocorrelation. In addition, the Breusch-Pegan-

Godfrey heteroscedasticity test and the ARCH test will also be used to test for the 

presence of heteroscedasticity.  

 

3.2.4 Causality 

Given that the ARDL approach attempts to determine the existence of 

cointegration among variables, but with no information concerning the direction 

of that relationship, this study uses the causality testing method of Toda and 

Yamamoto (1995), where we estimated a vector autoregression (VAR) model 

which is formulated in levels.  

The main advantage of Toda and Yamamoto (1995) test is its appropriateness 

even if the order of integration of variable is not the same. The basic idea of the 

Toda and Yamamoto (1995) procedure is to intentionally add additional lags in the 

estimation of a VAR. More specifically, the estimation process consists of two 

steps, where after determining the maximum integration order (dmax) of the 

inherent variables, we run an unrestricted level VAR model and determine the lag 

length k. Residual and stability tests were performed to guarantee that the residuals 

of the estimated model are serially independent and that the model is stable over 

the sample period. This was followed by the use of the Wald procedure to test the 

Granger causality of the (k + dmax) th-order VAR. 

 

4. Results and Discussion  

4.1 Descriptive Summary and Correlation 

Before performing some unit root tests, we proceed to some preliminary analyses 

of our data series. Table 2 details the initial descriptive statistics of the data used 

for estimation, whereas Fig.1 exhibits the time plots of the variables analyzed in 

the study. The Table indicates that PM2.5 has a minimum value of 5.633 and 

maximum of 16.771 over the period under consideration. The minimum and 
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maximum values of industrialization are 84.202 and 104.166, respectively. 

Regarding the climatic variables, the relative humidity has the highest average 

(73.709), while the lowest average value is the wind speed (4.634). In addition, we 

found that wind speed had the lowest standard deviation compared to the other 

climate variables. Subsequently, the statistic of skewness reveals that, the variables 

industrialization, relative humidity, temperature and wind speed are negatively 

skewed meaning these variables are skewed to the right compared to a normal 

distribution. Whereas PM2.5, Precipitation and GDP are skewed to the left. 

Additionally, according to the kurtosis results, the distributions of all variables are 

platykurtic (kurtosis values less than 3), except for precipitation and relative 

humidity, which have leptokurtic distributions (kurtosis values greater than 3). 

Since none of the kurtosis and skewness values for these variables meet the 

conditions for normality. We confirm that the series is not normally distributed. 

Furthermore, the Jarque-Bera (JB) statistic, one of the most used tests of normality, 

is consistent with the prior results as it rejects the null hypothesis that the data are 

normally and identically distributed. 

 



 
 
 

Table 2. Descriptive Statistics of the Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Source: Research finding. 

 

Table 3. Correlation Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   

 

 PM2_5 EG EC IPI PRECIP RH TEMP WS 

Mean 10.114 16125.51 8.151 96.657 3.014 73.709 14.463 4.634 

Median 9824821 15818.48 8.057 98.022 2.515 74.97 14.975 4.62 

Maximum 16.771 19850.65 9.664 104.166 14.44 88.19 32.61 6.26 

Minimum 5.633 12870.36 6.513 84.202 0.04 44 -3.71 2.78 

Std. Dev. 2.396 1865.161 0.542 4.844 2041573 8.009 9.542 0.745 

Skewness 0.352 0.12 0.438 -0.471 1.457 -1.2 -0.079 -0.044 

Kurtosis 2.411 2.037 2.893 2.183 7.157 4.799 1.711 2.288 

Jarque - Bera 9.259 10.837 8.582 17.084 283.475 98.987 18.547 5.661 

Probability 0.01 0.004 0.014 0 0 0 0 0.059 

Correlation probability PM2 5 EG EC IPI PRECIP RH TEMP WS 

PM2_5 1.00        

EG -0.718*** 1.00       

EC 0.354*** 0.008 1.00      

IPI -0.385*** 0.695*** 0.233*** 1.00     

PRECIP -0.193*** 0.056 -0.36*** 0.036 1.00    

RH -0.131** 0.154** 0.142** 0.055 0.314*** 1.00   

TEMP 0.008 0.018 -0.451*** 0.004 0.397*** -0.391*** 1.00  

WS -0.262*** -0.028 -0.048 -0.028 -0.088 0.101 -0.561*** 1.00 

Source: Research finding. 

Note: (***) and (**) denote the rejection of the null hypothesis at 1% and 5%, respectively. 
 



 

 

 

Figure 1. Time Series Plots The Variables 

Source: Research finding. 
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In Table 3, we display the correlation matrix between variables under 

consideration. As shown in the table, a significant negative relationship is observed 

between PM2.5 and the variables economic growth, industrialization, 

precipitation, relative humidity, and wind speed for the sampled period. However, 

for the case of energy consumption, as a priori expectation, a positive statistical 

association is seen with PM2.5.  

 

4.2 Stationarity Analysis 

This study adopts the augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) 

test, and Kwiatkowski -Phillips-Schmidt-Shin (KPSS) test as unit root tests to 

confirm whether the studied variables were stationary at level, first difference or 

both. The results are given below in Table 4. 

 

Table 4. The Results of Unit Root Tests 

Variables At Level At First Difference Outcome 

 Intercept Intercept     and Trend Intercept 
Intercept 

and Trend 
 

Phillips-Perron     

PM2_5 -8.0005** -10.4548*** -42.0052*** -42.7551*** I(0) 

EG -0.0878 -3.7665** -16.8784*** -16.8555*** I(0)/I(1) 

EC -9.1643*** -5.2914*** -30.3580*** -30.1914*** I(0) 

IPI -2.1430 -2.6754 -12.9017*** -12.8744*** I(1) 

PRECIP -12.1426*** -12.1280*** -44.0221*** -43.9216*** I(0) 

RH -7.4315*** -7.4825*** -53.9948*** -54.0350*** I(0) 

TEMP -6.7052*** -6.6946*** -8.1404*** -8.1264*** I(0) 

WS -7.5845*** -7.5568*** -41.3206*** -41.1428*** I(0) 

Augmented Dickey-Fuller     

PM2_5 -1.6927 -1.8818 -6.4942*** -6.6043*** I(1) 

EG -0.2626 -3.4008* -14.3581*** -14.3383*** I(0)/I(1) 

EC -4.1768*** -4.1801*** -4.1687*** -4.1601*** I(0) 

IPI -2.0335 -2.5719 -11.9947*** -11.9716*** I(1) 

PRECIP -12.1720*** -12.1584** -12.4812*** -12.4534*** I(0) 

RH -7.6511*** -7.7473*** -10.4290*** -10.4116*** I(0) 

TEMP -2.6948* -2.6907 -15.2937*** -15.2569*** I(0)/I(1) 
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WS -3.7096*** -3.7015** -14.4934*** -14.4646*** I(0) 

Kwiatkowski -Phillips-Schmidt-Shin    

PM2_5 2.1286*** 0.2595*** 0.1157 0.0795 I(1) 

EG 2.0732*** 0.1616** 0.0675 0.0538 I(1) 

EC 0.1186 0.0636 0.0829 0.0411 I(0) 

IPI 0.8980*** 0.0726 0.0362 0.0363 I(1) 

PRECIP 0.1021 0.0489 0.0877 0.0507 I(0) 

RH 0.2259 0.0802 0.2094 0.2045** I(0) 

TEMP 0.0127 0.0095 0.0114 0.0070 I(0) 

WS 0.0546 0.0523 0.1138 0.1103 I(0) 

Source: Research finding. 

Note: (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1%. 
 

With reference to Table 4, we note that the results of the tests are roughly 

similar for most of the considered cases. More interestingly, even if some 

differences exist regarding the identification of the order of integration, none of 

the used tests reveal that the level of integration exceeds 2. Particularly, some 

among the variables in our study are stationary at level I(0) stationary, while others 

are stationary at first difference I(1). So that the ARDL approach is a suitable 

technique to apply for the cointegration analysis (Pesaran et al., 2001). 

 

4.3 ARDL Bound Testing 

According to the ARDL method, selecting the appropriate lag length for each of 

the variables is very essential. Therefore, using AIC lag length criteria, the 

(3,6,2,5,0,0,4,1) model is used for the estimating the long run relationship. Now 

that it has been proved that none of the variables are I(2) or beyond, we will 

proceed to the next stage of analysis to see if there is evidence of a long-run 

relationship among the variables. This can be done using the bounds testing 

approach provided by Pesaran et al. (2001). The ARDL bounds estimation tests the 

null hypothesis that no long run association exists. Decision rule is to reject H0 if 

the computed F-statistic lies above the upper bound of Pesaran test statistic table 

(the variables are co-integrated). The results of the ARDL bound test of 

cointegration are displayed in Table 5. 

It is apparent from the results that the value of F-statistic of our model is 

greater than the upper bound of Pesaran test statistic at 1% level of significance. 
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Accordingly, we strongly reject the hypothesis of no co-integration, proving the 

existence of a long-run relationship between PM2.5 and the selected independent 

variables over the period considered. 

 

Table 5. Bound Test for Cointegration 

F-statistic 4.185182 

K 7 

Significance Level Bound Critical Values 

 Lower Bound I(0) Upper Bound I(1) 

10% 1.92 2.89 

5% 2.17 3.21 

2.5% 2.43 3.51 

1% 2.73 3.9 

Source: Research finding. 

 

4.4 Estimation Short-Run and Long-Run Relationships 

4.4.1 Long-Run Relationships 

Given that the variables have a co-integrating relationship, we can consequently estimate 

the short- and long-term dynamic relationships between the variables. Table 6 depicts the 

long-run results. 

 

Table 6. Long-run Coefficients of ARDL 

Variable Coefficient Std. Error t-Statistic Prob. 

EG -0.001004*** 0.000145 -6.935433 0.0000 

EC 1.532038* 0.844782 1.813532 0.0711 

IPI 0.005008 0.061910 0.080887 0.9356 

PRECIP -0.133651 0.124057 -1.077335 0.2825 

RH 0.043997 0.034710 1.267583 0.2062 

TEMP 0.061702 0.078987 0.781170 0.4355 

WS -0.878573 0.545000 -1.612059 0.1083 

C 13.66031 8.640153 1.581027 0.1153 

Source: Research finding. 

Note: (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at 

the 1%.  

 

The estimated results of the long run relationship reveal that, economic 

growth has a negative impact on PM2.5 concentrations, which is justified by both 

the sign and the statistical significance of its coefficient, implying that when the 
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economy is expanding PM2.5 concentrations are managed efficiently. This 

signifies that economic growth has been conducive to enhancing the quality of the 

environment in the United States during the study period. These results are 

consistent with Jiang et al. (2022). 

On the contrary, we observe a positive relationship between energy 

consumption and PM2.5, which means that energy consumption stimulates 

environmental pollution. Our findings reliably accept that the estimated coefficient 

is equal to 1.532038 and it is statistically significant. This is to be expected, given 

that the United States is the world's largest consumer of fossil fuels. The results on 

energy consumption corroborated the findings of Gupta et al. (2022) and Zhao et 

al. (2018). They found that higher energy consumption degrades environmental 

quality in the long run. This result is an incentive for policy makers to work on 

reducing PM2.5emissions. Similar to energy consumption, industrialization 

degrades the quality of the environment in the long run as, although as the results 

show, its coefficient is insignificant. In addition, as expected, temperature and 

relative humidity are positively correlated with PM2.5 concentrations, 

nevertheless they are also insignificant. Whereas the coefficient value is not 

significant. Regarding precipitation and wind speed, the results show that they both 

have an inverse relationship with PM2.5. This is justified by the fact that the 

estimated coefficients are equal to -0.878573 and 0.061702, respectively. The sign 

of these two variables is negative as expected, but both coefficients are not 

statistically significant. 

 

4.4.2 Short-Run Relationships 

After examining the long-run relationship of the variables, we will now analyze 

the short-run relationship of this model. Table 7 summarizes the short run results. 

These results show a strong positive relationship that is significant in the short as 

well as the long term, as indicated by a coefficient of 1.388173. Therefore, energy 

consumption is the largest contributor to PM2.5. This result is consistent with 

previous studies that have shown that the consumption of non-renewable energy 

sources such as coal and oil increases PM2.5 concentrations and thus degrades 

environmental quality. In contrast to the long run estimate, which showed a 

negative and significant impact of economic growth on PM2.5, the short run 

estimate validates a significant but positive relationship between the two variables, 

signifying that in the short term, PM2.5 concentrations increase with economic 

growth. As for industrialization, there is an inverse relationship with PM2.5 

concentrations in the short term. This could be explained by the fact that optimizing 
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the industrialization alleviates PM2.5 pollution. Regarding meteorological factors, 

the coefficient of temperature was found to be positive and significant at least than 

5% level. This result indicates that temperature rises are likely to raise PM2.5 

concentrations. Therefore, temperature was found to exert appositive effect on air 

pollution. In the case of wind speed, as for the long term, there is an inverse 

statistical relationship with PM2.5. The results show that the estimated coefficient 

is equal to -0.60, suggesting that increasing wind speed leads to a reduction in 

PM2.5 concentrations. The reason for this is that the higher the wind speed, the 

greater the dilution and diffusion of the pollutants in the air (Liu et al., 2019). Low 

wind speed, on the other hand, limits the diffusion of PM2.5and causes it to 

concentrate on the surface (Li et al., 2017). Lastly, the coefficient of cointEq or 

ECM (-1) is negative, as expected, and statistically significant, indicating the 

presence of a long-term relationship among the variables of the study. The value 

of ECT coefficient is -0.386978, which indicates a rapid and strong adjustment to 

equilibrium. In other words, about 38% of the disequilibrium in the short run 

converges back to the long run equilibrium monthly.  

 

Table 7. Short-run Coefficients of ARDL  

ECM Regression 

Variable Coefficient Std. Error t-Statistic Prob. 

D(PM2_5(-1)) -0.254940 0.055808 -4.568146 0.0000 

D(PM2_5(-2)) -0.191105 0.043980 -4.345233 0.0000 

D(EG) 0.001026* 0.000616 1.665731 0.0971 

D(EG(-1)) 0.000514 0.000618 0.831604 0.4065 

D(EG(-2)) 0.000666 0.000625 1.066525 0.2873 

D(EG(-3)) -1.64E-05 0.000625 -0.026186 0.9791 

D(EG(-4)) -0.001176 0.000626 -1.879147 0.0615 

D(EG(-5)) -0.002050 0.000414 -4.947946 0.0000 

D(EC) 1.388173*** 0.137380 10.10459 0.0000 

D(EC(-1)) 0.853865 0.161464 5.288282 0.0000 

D(IPI) -0.291333*** 0.100870 -2.888209 0.0042 

D(IPI(-1)) -0.019891 0.097417 -0.204185 0.8384 

D(IPI(-2)) -0.036433 0.095450 -0.381698 0.7030 
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D(IPI(-3)) 0.105573 0.095905 1.100812 0.2721 

D(IPI(-4)) 0.354849 0.098403 3.606069 0.0004 

D(TEMP) 0.065624*** 0.015955 4.113075 0.0001 

D(TEMP(-1)) -0.025384 0.018827 -1.348247 0.1789 

D(TEMP(-2)) -0.023125 0.018474 -1.251736 0.2119 

D(TEMP(-3)) 0.044161 0.016467 2.681805 0.0079 

D(WS) -0.604840*** 0.102283 -5.913403 0.0000 

CointEq(-1) -0.386978*** 0.061980 -6.243597 0.0000 

R-squared 0.641195    

Adjusted R-squared 0.610916    

Durbin-Watson stat 2.048688    

Source: Research finding. 

Note: (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1%.           

 

4.5 Diagnostic Tests of the Model 

In this study, to verify the robustness and fitness of our model we used serial 

correlation (Breusch-Godfrey Serial Correlation LM test), heteroscedasticity 

(Breusch-Pagan-Godfrey test and ARCH test) and Ramsay's Reset stability tests. 

The results are reported in the Table 8. 

 

Table 8. Diagnostic Tests 

Test F-statistic Probability 

Breusch-Godfrey Serial Correlation LM test 0.715331 0.3986 

Breusch-Pagan-Godfrey test 1.380823 0.1041 

ARCH test 1.043122 0.3081 

Ramey’s RESET test 2.61669 0.0752 

Source: Research finding. 

 

Based on the test results, we can conclude that the model is free from 

autocorrelation, heteroskedasticity, and it is well specified. Finally, to check the 

stability of the long-term of the coefficient of the estimated variables in the model, 

the cumulative sum (CUSUM) and the cumulative sum of squares (CUSUMSQ) 

tests are used. The graphs of the CUSUM (Fig. 2) and CUSUMSQ (Fig. 3) show 
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that, both plots lie within the 5% critical bound, indicating that, the estimated 

coefficients of the model are stable for the period 2000-2021 at the 5% level of 

significance. 

 

 

 
Figure 2. CUSUM Plot 

Source: Research finding. 

 

 
Figure 3. CUSUMSQ Plot 

Source: Research finding. 

 

4.6 Toda-Yamamoto Test Results 

The final step of the investigation is to test the existence of a causal relationship 

between the variables; indeed, the direction of causality may be informative about 

the role of socio-economic and meteorological factors in reducing 
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PM2.5emissions. Therefore, to explore the causality and directions between the 

selected variables, this study used the test of Toda-Yamamoto (1995). It has been 

used in this study for it is suitable in the case of stationary series at different orders 

and in the presence of cointegration. Toda-Yamamoto's (1995) approach includes 

the following steps: 

The first step in the Toda- Yamamoto causality test is to specify the 

maximum integration order (dmax). As a result of the performed ADF, PP and 

KPSS unit root tests, we found that the maximum order of integration was I(1). 

Therefore, (dmax) is determined to be 1. Then, it is required to select the 

appropriate lag length (k). In this context, the optimal lag length is chosen as 11 to 

ensure that the model is free of serial correlation. 

After checking the adequacy of the VAR model, the Toda-Yamamoto 

causality test was performed. The findings of the test are displayed in the table 9 

below. 

 

Table 9. Toda-Yamamoto Causality Test 

Independent 

variables  

Dependent variables 

 PM2.5 EG EC IPI Precip RH Temp WS 

PM2.5  0.8025 0.3302 0.9446 0.0545 0.0076 0.6905 0.8914 

EG 0.0019  0.3499 0.0038 0.4584 0.2042 0.5993 0.8582 

EC 0.0139 0.4041  0.9680 0.2826 0.0031 0.1919 0.0027 

IPI 0.0739 0.4238 0.1067  0.2001 0.0412 0.7913 0.9426 

Precip 0.6720 0.0000 0.3465 0.0013  0.0135 0.3114 0.4305 

RH 0.8030 0.0176 0.1055 0.0863 0.2580  0.9328 0.1823 

Temp 0.2924 0.0793 0.0002 0.6850 0.0214 0.2313  0.3470 

WS 0.0907 0.0356 0.0985 0.1384 0.5201 0.0080 0.6168  

Source: Research finding. 

 

As presented in Table 9, we can confirm that there is evidence of causality. 

More precisely, there is a unidirectional causality initiating from economic growth 

and energy consumption to PM2.5 concentration at 5% significance level. An 

equivalent trend of unidirectional causality is witnessed triggering from 

industrialization and wind speed to PM2.5 at the 10% significance level. 

 

5. Conclusion and Policy Recommendation 

This study examines the impact of meteorological and socioeconomic factors on 

PM2.5 concentrations in the United States, from January 2000 to December 2021, 
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using the ARDL approach to cointegration. Prior to the application of modelling 

approach, the integration proprieties of the variables were investigated by 

performing the Augmented Dickey Fuller, Philipps-Perron, and Kwiatkowski-

Phillips-Schmidt-Shin unit root tests. 

Our findings support the existence of long-run relationship among the 

variables. Furthermore, from a meteorological perspective, the estimation results 

revealed that the coefficient of temperature has a positive and significant only in 

the short term, indicating that rises in temperature lead to increases in PM2.5 

concentrations. In contrast, wind speed exerts a statically negative correlation with 

PM2.5 concentrations, suggesting that the greater the wind speed, the better the 

dilution and diffusion of pollutants in the air. Besides, no significant impact exists 

for precipitation and relative humidity.  

Regarding the socioeconomic factors, the results suggest that, in both the 

long and short term, energy consumption worsened PM2.5 pollution. However, 

there exists an inverse relationship between economic growth and PM2.5 

concentrations only in the long term, which contrasts with what was found in the 

short term. Besides, industrialization exerts a negative impact on PM2.5 

concentrations only in the short term. 

Finally, the analysis of the Toda Yamamoto test reveals the existence of a 

unidirectional causality running from economic growth, energy consumption, 

industrialization and wind speed to PM2.5.  

Based on the empirical findings, this study provides some important policy 

implications. First, since precipitation, wind speed, relative humidity, and 

temperature have quite different influences on PM2.5 concentrations, different air 

pollution reduction goals and targets should be set according to different 

meteorological conditions. Second, regarding energy consumption and economic 

growth, both are key variables influencing PM2.5. Therefore, policy makers must 

very carefully balance the relation between attenuating PM2.5 concentrations and 

minimizing energy consumption as well as boosting economic growth when 

formulating policies to manage PM2.5 concentrations. Moreover, in the U.S. 

economy, the use of renewable energy sources has been greatly promoted in recent 

years. Yet, this alternative energy in the country is not quite sufficient. Even though 

the consumption of fossil fuels is being curtailed, this is still not enough. Therefore, 

the government should encourage the application and popularization of green 

energy such as wind and solar energy by providing substantial subsidies and 

incentives for the use of renewable energy and by giving more tax exemptions to 

companies that use clean energy to realize green economic development. Lastly, 
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unlike in developing countries, increasing GDP in developed countries, such as in 

our case the United States, can lead to growth with lower PM2.5 concentrations, 

so policies that promote economic growth are also beneficial in terms of improving 

air quality. 

Our analysis has some limitations in that it proves the internal validity of the 

findings in the context of the United States. Therefore, more investigation is 

necessary to ascertain whether our outcomes, related to the main drivers of PM2.5 

concentrations, can be generalized to other countries. Furthermore, future studies 

could extend our framework by investigating the potential asymmetric 

cointegration between the variables under consideration. 
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