Abrishami, H., Mehrara, M., Ahrari, M., & Varahrami, V. (2010). A Hybrid Intelligent System for Forecasting Gasoline Price. Iranian Economic Review, 15(27), 13-31.
Asgharizadeh, E., & Taghizadeh, M. R. (2012). A Hierarchical Artificial Neural Network For Gasoline Demand Forecast of Iran. International Journal of Humanities, 19(1), 1-13.
Assari, M. R., Ghanbarzadeh, A., Assareh, E., & Behrang, M. A. (2009, June). Coal Demand Estimating In Iran Based on Socio-Economic Indicators Using Particle Swarm Optimisation and Genetic Algorithm. 2009 7th IEEE International Conference on Industrial Informatics. Cardiff: IEEE.
Azadeh, A., Arab, R., & Behfard, S. (2010). An Adaptive Intelligent Algorithm for Forecasting Long Term Gasoline Demand Estimation: The Cases of USA, Canada, Japan, Kuwait and Iran. Expert Systems with Applications, 37(12), 7427-7437.
Azadeh, A., Arab, R., & Behfard, S. (2010). An Adaptive Intelligent Algorithm for Forecasting Long Term Gasoline Demand Estimation: The Cases of USA, Canada, Japan, Kuwait and Iran. Expert Systems with Applications, 37(12), 7427-7437.
Azadeh, A., Boskabadi, A., & Pashapour, S. (2015). A Unique Support Vector Regression for Improved Modelling and Forecasting of Short-Term Gasoline Consumption in Railway Systems. International Journal of Services and Operations Management, 21(2), 217-237.
Azadeh, A., Boskabadi, A., & Pashapour, S. (2015). A Unique Support Vector Regression for Improved Modelling and Forecasting of Short-Term Gasoline Consumption in Railway Systems. International Journal of Services and Operations Management, 21(2), 217-237.
Azadeh, A., Mirjalili, M., Sheikhalishahi, M., & Nassiri, S. (2012). An Integrated Genetic Algorithm-Conventional Regression-Analysis Of Variance For Improvement Of Gasoline Demand Estimation. International Journal of Industrial and Systems Engineering, 11(3), 205-224.
Broadhead, J., & Killmann, W. (2008). Forests and Energy: Key Issues (154). Rome: Food & Agriculture Org.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint arXiv, Retrieved from https://arxiv.org/pdf/1406.1078.pdf?source=post_page
Diebold, F. X., & Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13, 253-63.
Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Wuhan: IEEE.
Graves, A. (2013). Generating Sequences with Recurrent Neural Networks. arXiv preprint arXiv, Retrieved from https://arxiv.org/pdf/1308.0850
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
Hrasko, R., Pacheco, A. G., & Krohling, R. A. (2015). Time Series Prediction Using Restricted Boltzmann Machines and Backpropagation. Procedia Computer Science, 55, 990-999.
Hussain, A. J., Knowles, A., Lisboa, P. J., & El-Deredy, W. (2008). Financial Time Series Prediction Using Polynomial Pipelined Neural Networks. Expert Systems with Applications, 35(3), 1186-1199.
Kazemi, A., Ganjavi, H. S., Menhaj, M., Mehregan, M., Taghizadeh, M., & Asl, A. F. (2009). A Multi-Level Artificial Neural Network for Gasoline Demand Forecasting of Iran. 2009 Second International Conference on Computer and Electrical Engineering. Dubai: IEEE.
Kazemi, A., Shakouri, H. G., Menhaj, M. B., Mehregan, M. R., & Neshat, N. (2010). A Hierarchical Artificial Neural Network for Transport Energy Demand Forecast: Iran Case Study. Neural Network World, 20(6), 761-772.
Kim, T. Y., & Cho, S. B. (2019). Predicting Residential Energy Consumption Using CNN-LSTM Neural Networks. Energy, 182, 72-81.
Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2017). Short-term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Transactions on Smart Grid, 10(1), 841-851.
Lee, C. M., & Ko, C. N. (2009). Time Series Prediction Using RBF Neural Networks with A Nonlinear Time-Varying Evolution PSO Algorithm. Neurocomputing, 73(1-3), 449-460.
Mustaffa, Z., & Yusof, Y. (2012). Lévy Mutation in Artificial Bee Colony Algorithm for Gasoline Price Prediction. Knowledge Management International Conference (KMICe) 2012, Retrieved from https://repo.uum.edu.my/id/eprint/10963/1/CR180.pdf
Nasr, G. E., Badr, E. A., & Joun, C. (2002, May). Cross Entropy Error Function in Neural Networks: Forecasting Gasoline Demand. FLAIRS Conference, Retrieved from https://laur.lau.edu.lb:8443/xmlui/bitstream/handle/10725/6723/Cross.pdf?sequence=1
Pelayo, D. R., Pacheco, J. A. C., & Miralles-Pechuán, L. (2016). Emotion Analysis in Gasoline Consumption in Mexico using Machine Learning. Advances in Computational Linguistics, 8, 1-20.
Predić, B., Madić, M., Roganović, M., Kovačević, M., & Stojanović, D. (2016). Prediction of Passenger Car Fuel Consumption Using Artificial Neural Network: A Case Study in The City of Niš. Facta Universitatis, Series: Automatic Control and Robotics, 1(2), 105-116.
Rahimi-Ajdadi, F., & Abbaspour-Gilandeh, Y. (2011). Artificial Neural Network and Stepwise Multiple Range Regression Methods for Prediction of Tractor Fuel Consumption. Measurement, 44(10), 2104-2111.
Report of Iran‘s Energy Balance Sheet. (2002-2018). Retrieved from https://www.iea.org/data
Sapankevych, N. I., & Sankar, R. (2009). Time Series Prediction Using Support Vector Machines: A Survey. IEEE Computational Intelligence Magazine, 4(2), 24-38.
Suganthi, L., & Samuel, A. A. (2012). Energy Models for Demand Forecasting-A Review. Renewable and Sustainable Energy Reviews, 16(2), 1223-1240.
Varsta, M., Heikkonen, J., Lampinen, J., & Millán, J. D. R. (2001). Temporal Kohonen Map and The Recurrent Self-Organizing Map: Analytical and Experimental Comparison. Neural Processing Letters, 13(3), 237-251.
Wang, X., Yang, K., & Kalivas, J. H. (2020). Comparison of Extreme Learning Machine Models for Gasoline Octane Number Forecasting by Near-Infrared Spectra Analysis. Optik, 200, 163325.
Wu, L. X., & Lee, S. J. (2020). A Deep Learning-Based Strategy to the Energy Management-Advice for Time-of-Use Rate of Household Electricity Consumption. Journal of Internet Technology, 21(1), 305-311.