Ajija, S., Pratiwi, I., & Wasiaturrahma, W. (2021). How to Control the House Prices Through the Demand Sides? Iranian Economic Review, 27(1), 1-15.
Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass Appraisal of Residential Apartments: An Application of Random Forest for Valuation and a CART-Based Approach for Model Diagnostics. Expert Systems with Applications, 39(2), 1772-1778.
Atrianfar, H., Barakchian, S., & Fatemi, S. (2013). Evaluation of Forecast Combination Methods. Journal of Applied Economics Studies in Iran, 2(6), 123-138.
Banerjee, D., & Dutta, S. (2017). Predicting the Housing Price Direction Using Machine Learning Techniques.
2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (2998-3000). Retrieved from
https://ieeexplore.ieee.org/abstract/document/8392275
Bork, L., & Møller, S. V. (2018). Housing Price Forecastability: A Factor Analysis. Real Estate Economics, 46(3), 582-611.
Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information, Knowledge, and Management, 14, 45-76.
Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments. ISPRS International Journal of Geo-Information, 7(5), 168-184.
Chiarazzo, V., Caggiani, L., Marinelli, M., & Ottomanelli, M. (2014). A Neural Network Based Model for Real Estate Price Estimation Considering Environmental Quality of Property Location. Transportation Research Procedia, 3, 810-817.
Denuit, M., Sznajder, D., & Trufin, J. (2019). Model Selection Based on Lorenz and Concentration Curves, Gini Indices and Convex Order. Insurance: Mathematics and Economics, 89, 128-139.
Diebold, F. X., & Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13(3), 253-263.
Dinarzehi, K., & Shahiki Tash, M. (2020). Price Jump Diffusion in Iranian Housing Market (Merton Model and NGARCH Approach). Iranian Economic Review, 26(2), 369-388.
Fachrurrazi, Husin, S., Tripoli, & Mubarak (2017). Neural Network for the Standard Unit Price of the Building Area. Procedia Engineering, 171, 282-293.
Geng, M. N. (2018). Fundamental Drivers of House Prices in Advanced Economies. International Monetary Fund, WP/18/164, 1-24.
Ghorbani, S., & Afgheh, S. M. (2017). Forecasting the House Price for Ahvaz City: the Comparison of the Hedonic and Artificial Neural Network Models. Journal of Urban Economics and Management, 5(19), 29-44.
Glennon, D., Kiefer, H., & Mayock, T. (2018). Measurement Error in Residential Property Valuation: An Application of Forecast Combination. Journal of Housing Economics, 41, 1-29.
Hong, J., Choi, H., & Kim, W. S. (2020). A House Price Valuation Based on the Random Forest Approach: the Mass Appraisal of Residential Property in South Korea. International Journal of Strategic Property Management, 24(3), 140-152.
Hu, G., Wang, J., & Feng, W. (2013). Multivariate Regression Modeling for Home Value Estimates with Evaluation Using Maximum Information Coefficient. Studies in Computational Intelligence, 443, 69-81.
Jarosz, M., Kutrzyński, M., Lasota, T., Piwowarczyk, M., Telec, Z., & Trawiński, B. (2020). Machine Learning Models for Real Estate Appraisal Constructed Using Spline Trend Functions. In Asian Conference on Intelligent Information and Database Systems (636-648). Cham: Springer.
Kulikauskas, D. (2017). The User Cost of Housing in the Baltic States. Journal of European Real Estate Research, 10(1), 17-34.
Kuşan, H., Aytekin, O., & Özdemir, I. (2010). The Use of Fuzzy Logic in Predicting House Selling Price. Expert Systems with Applications, 37(3), 1808-1813.
Malpezzi, S. (2002). Hedonic Pricing Models: A Selective and Applied Review (67-89). In Housing Economics and Public Policy. New York: John Wiley & Sons, Ltd.
Mariano, R. S., & Preve, D. (2012). Statistical Tests for Multiple Forecast Comparison. Journal of econometrics, 169(1), 123-130.
Mohammadian Mosammam, A., & Abbasi, M. (2015). House Price Analysis of Tehran City Using Generalized Additive Models. Ijoss Iranian Journal of Official Statistics Studies, 25(2), 161-174.
Mousavi, M., & Doroodian, H. (2016). Analyzing the Determinants of Housing Prices in Tehran City. Quarterly Journal of Economic Modeling, 9(3), 103-127.
Mukhlishin, M. F., Saputra, R., & Wibowo, A. (2017, November). Predicting house sale price using fuzzy logic, Artificial Neural Network and K-Nearest Neighbor. 2017
1st International Conference on Informatics and Computational Sciences (ICICoS), Retrieved from
https://ieeexplore.ieee.org/abstract/document/8276357
Park, B., & Kwon Bae, J. (2015). Using Machine Learning Algorithms for Housing Price Prediction: The Case of Fairfax County, Virginia Housing Data. Expert Systems with Applications, 42(6), 2928-2934.
Pérez-Rave, J. I., Correa-Morales, J. C., & González-Echavarría, F. (2019). A Machine Learning Approach to Big Data Regression Analysis of Real Estate Prices for Inferential and Predictive Purposes. Journal of Property Research, 36(1), 59-96.
Sabbagh Kermani, M., Ahmadzadeh, K., & Musavi Nik, S. (2010). Determinants of House Price Using Causality Relations Approach in Vector Error Correction Model: Case Study Tehran. Economic Research, 10(37), 267-293.
Sarip, A. G., Hafez, M. B., & Nasir Daud, M. (2016). Application of Fuzzy Regression Model for Real Estate Price Prediction. Malaysian Journal of Computer Science, 29(1), 15-27.
Selim, H. (2009). Deter minants of House Prices in Turkey: Hedonic Regression Versus Artificial Neural Network. Expert Systems with Applications, 36(2 Part 2), 2843–2852.
Trawiński, B., Telec, Z., Krasnoborski, J., Piwowarczyk, M., Talaga, M., Lasota, T., & Sawiłow, E. (2017). Comparison of Expert Algorithms with Machine Learning Models for Real Estate Appraisal. 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Retrieved from https://www.semanticscholar.org/paper/Comparison-of-expert-algorithms-with-machine-models-Trawinski-Telec/a29a1f38f5ce13fb0f36d6de7375aaecd1d8b266
Truong, Q., Nguyen, M., Dang, H., & Mei, B. (2020). Housing Price Prediction via Improved Machine Learning Techniques. Procedia Computer Science, 174, 433-442.
Wei, C., Du, C., & Zheng, N. (2020). A Changing Weights Spatial Forecast Combination Approach with an Application to Housing Price Prediction. International Journal of Economics and Finance, 12(4), 1-11.
Yitzhaki, S., & Schechtman, E. (2013). The Gini Methodology: A Primer on A Statistical Methodology. New York: Springer.
Zhang, S., Dang, X., Nguyen, D., Wilkins, D., & Chen, Y. (2019). Estimating Feature-Label Dependence Using Gini Distance Statistics.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Retrieved from
https://arxiv.org/pdf/1906.02171.pdf
Zietz, J., & Traian, A. (2014). When Was the U.S. Housing Downturn Predictable? A Comparison of Univariate Forecasting Methods. Quarterly Review of Economics and Finance, 54(2), 271-281.