Abd Aziz, A., Lee, K., Park, B., Park, H., Park, K., Choi, I. G., & Chang, I. S. (2018). Comparative Study of the Airborne Microbial Communities and Their Functional Composition in Fine Particulate Matter (PM2.5) under Non-Extreme and Extreme PM2.5 Conditions. Atmospheric Environment, 194, 82–92. Retrieved from https://doi.org/10.1016/J.ATMOSENV.2018.09.027
Bai, L., Jiang, L., Yang, D. Y., & Liu, Y. B. (2019). Quantifying the Spatial Heterogeneity Influences of Natural and Socioeconomic Factors and Their Interactions On Air Pollution Using the Geographical Detector Method: A Case Study of the Yangtze River Economic Belt, China. Journal of Cleaner Production, 232, 692–704. Retrieved from https://doi.org/10.1016/J.JCLEPRO.2019.05.342
Baldwin, R. (1995). Does Sustainability Require Growth? In The Economics of Sustainable Development (51–78). Retrieved from https://doi.org/10.1017/CBO9780511751905.005
Borhan, H., Ahmed, E. M., & Hitam, M. (2012). The Impact of Co2 on Economic Growth in Asean 8. Procedia - Social and Behavioral Sciences, 35, 389–397. Retrieved from https://doi.org/10.1016/J.SBSPRO.2012.02.103
Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2017). Associations of Ambient Coarse Particulate Matter, Nitrogen Dioxide, and Carbon Monoxide with the Risk of Kidney Disease: A Cohort Study. The Lancet Planetary Health, 1(7), e267–e276. Retrieved from https://doi.org/10.1016/S2542-5196(17)30117-1
BP. (2021). Statistical Review of World Energy Globally Consistent Data on World Energy Markets and Authoritative Publications in the Field of Energy. In BP Energy Outlook, 70, Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf
Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for Testing the Constancy of Regression Relationships Over Time. Journal of the Royal Statistical Society: Series B (Methodological), 37(2), 149–163. Retrieved from https://doi.org/10.1111/J.2517-6161.1975.TB01532.X
Chen, J., Zhou, C., Wang, S., & Hu, J. (2018). Identifying the Socioeconomic Determinants of Population Exposure to Particulate Matter (PM2.5) in China Using Geographically Weighted Regression Modeling. Environmental Pollution, 241, 494–503. Retrieved from https://doi.org/10.1016/J.ENVPOL.2018.05.083
Chen, J., Zhou, C., Wang, S., & Li, S. (2018). Impacts of Energy Consumption Structure, Energy Intensity, Economic Growth, Urbanization on PM2.5 Concentrations in Countries Globally. Applied Energy, 230, 94–105. Retrieved from https://doi.org/10.1016/J.APENERGY.2018.08.089
Chen, Z., Xie, X., Cai, J., Chen, D., Gao, B., He, B., Cheng, N., & Xu, B. (2018). Understanding Meteorological Influences on PM2.5 Concentrations across China: A Temporal and Spatial Perspective. Atmospheric Chemistry and Physics, 18(8), 5343–5358. Retrieved from https://doi.org/10.5194/ACP-18-5343-2018
Cifuentes, F., Gálvez, A., González, C. M., Orozco-Alzate, M., & Aristizábal, B. H. (2021). Hourly Ozone and PM2.5 Prediction Using Meteorological Data – Alternatives for Cities with Limited Pollutant Information. Aerosol and Air Quality Research, 21(9), 200471. Retrieved from https://doi.org/10.4209/AAQR.200471
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. Retrieved from https://doi.org/10.1016/S0140-6736(17)30505-6
Cole, M. A., & Neumayer, E. (2004). Examining the Impact of Demographic Factors on Air Pollution. Population and Environment, 26(1), 5–21. Retrieved from https://doi.org/10.1023/B:POEN.0000039950.85422.EB/METRICS
Cramer, J. C. (1998). Population Growth and Air Quality in California. Demography, 35(1), 45–56. Retrieved from https://doi.org/10.2307/3004026
Cramer, J. C., & Cheney, R. P. (2000). Lost in the Ozone: Population Growth and Ozone in California. Population and Environment, 21(3), 315–338. Retrieved from https://doi.org/10.1007/BF02436134/METRICS
Engle, R. F., & Granger, C. W. J. (2015). Co-integration and Error Correction: Representation, Estimation, and Testing. Applied Econometrics, 39(3), 107–135. Retrieved from https://doi.org/10.2307/1913236
Fang, D., & Yu, B. (2021). Driving Mechanism and Decoupling Effect of PM2.5 Emissions: Empirical Evidence from China’s Industrial Sector. Energy Policy, 149, 112017. Retrieved from https://doi.org/10.1016/J.ENPOL.2020.112017
Gao, X., Ruan, Z., Liu, J., Chen, Q., & Yuan, Y. (2022). Analysis of Atmospheric Pollutants and Meteorological Factors on PM2.5 Concentration and Temporal Variations in Harbin. Atmosphere, 13(9), 1-20. Retrieved from https://doi.org/10.3390/atmos13091426
Grossman, G., Krueger, A., Grossman, G., & Krueger, A. (1991). Environmental Impacts of a North American Free Trade Agreement. Retrieved from https://econpapers.repec.org/RePEc:nbr:nberwo:3914
Gupta, M., Saini, S., & Sahoo, M. (2022). Determinants of Ecological Footprint and PM2.5: Role of Urbanization, Natural Resources and Technological Innovation. Environmental Challenges, 7, 100467. Retrieved from https://doi.org/10.1016/J.ENVC.2022.100467
Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., Vineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., & Loomis, D. (2014). Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environmental Health Perspectives, 122(9), 906–911. Retrieved from https://doi.org/10.1289/EHP/1408092
Han, L., Zhou, W., Pickett, S. T. A., Li, W., & Li, L. (2016). An Optimum City Size? The Scaling Relationship for Urban Population and Fine Particulate (PM2.5) Concentration. Environmental Pollution, 208, 96–101. Retrieved from https://doi.org/10.1016/J.ENVPOL.2015.08.039
Ji, X., Yao, Y., & Long, X. (2018). What Causes PM2.5 Pollution? Cross-economy Empirical Analysis from Socioeconomic Perspective. Energy Policy, 119, 458–472. Retrieved from https://doi.org/10.1016/J.ENPOL.2018.04.040
Jiang, J., Zhu, S., & Wang, W. (2022). Carbon Emissions, Economic Growth, Urbanization, and Foreign Trade in China: Empirical Evidence from ARDL Models. Sustainability, 14(15), 9396. Retrieved from https://doi.org/10.3390/SU14159396
Jing, Z., Liu, P., Wang, T., Song, H., Lee, J., Xu, T., & Xing, Y. (2020). Effects of Meteorological Factors and Anthropogenic Precursors on PM2.5 Concentrations in Cities in China. Sustainability 2020, Vol. 12, Page 3550, 12(9), 3550. Retrieved from https://doi.org/10.3390/SU12093550
Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica, 59(6), 1551. Retrieved from https://doi.org/10.2307/2938278
Johansen, S., & Juselius, K. (1990). Maximum Likelihood Estimation and Inference on Cointegration—with Applications to the Demand for Money. Oxford Bulletin of Economics and Statistics, 52(2), 169–210. Retrieved from https://doi.org/10.1111/J.1468-0084.1990.MP52002003.X
Li, G., Fang, C., Wang, S., & Sun, S. (2016). The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environmental Science and Technology, 50(21), 11452–11459. Retrieved from https://doi.org/10.1021/ACS.EST.6B02562/SUPPL_FILE/ES6B02562_SI_001.PDF
Li, X., Miao, Y., Ma, Y., Wang, Y., & Zhang, Y. (2021). Impacts of Synoptic Forcing and Topography on Aerosol Pollution during Winter in Shenyang, Northeast China. Atmospheric Research, 262, 105764. Retrieved from https://doi.org/10.1016/J.ATMOSRES.2021.105764
Liu, Q., Wang, S., Zhang, W., Li, J., & Dong, G. (2019). The Effect Of Natural And Anthropogenic Factors on PM2.5: Empirical Evidence from Chinese Cities with Different Income Levels. Science of The Total Environment, 653, 157–167. Retrieved from https://doi.org/10.1016/J.SCITOTENV.2018.10.367
Liu, X., Zou, B., Feng, H., Liu, N., & Zhang, H. (2020). Anthropogenic Factors of PM2.5 Distributions in China’s Major Urban Agglomerations: A Spatial-Temporal Analysis. Journal of Cleaner Production, 264, 121709. Retrieved from https://doi.org/10.1016/J.JCLEPRO.2020.121709
Lou, C. R., Liu, H. Y., Li, Y. F., & Li, Y. L. (2016). Socioeconomic Drivers of PM2.5 in the Accumulation Phase of Air Pollution Episodes in the Yangtze River Delta of China. International Journal of Environmental Research and Public Health, 13(10), 928-950. Retrieved from https://doi.org/10.3390/IJERPH13100928
Luo, J., Du, P., Samat, A., Xia, J., Che, M., & Xue, Z. (2017). Spatiotemporal Pattern of PM2.5 Concentrations in Mainland China and Analysis of Its Influencing Factors using Geographically Weighted Regression. Scientific Reports, 7(1), 1–14. Retrieved from https://doi.org/10.1038/srep40607
Malthus, T. (1798). An Essay on the Principle of Population. In S. P. C. -Y. J. Johnson (Ed.), An Essay on the Principle of Population. Retrieved from https://doi.org/10.4324/9781912281176
OECD. (2016). The Economic Consequences of Outdoor Air Pollution. In The Economic Consequences of Outdoor Air Pollution. Retrieved from https://doi.org/10.1787/9789264257474-en
Park, I. S., Park, M. S., Kim, S. H., Jang, Y. W., Lee, J., Owen, J. S., Cho, C. R., Jee, J. B., Chae, J. H., & Kang, M. (2021). Meteorological Characteristics during Periods of Greatly Reduced PM2.5 Concentrations in March 2020 in Seoul. Aerosol and Air Quality Research, 21(9), 200512. Retrieved from https://doi.org/10.4209/AAQR.200512
Pateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The Role of Meteorology on Different Sized Aerosol Fractions (PM10, PM2.5, PM2.5–10). Science of The Total Environment, 419, 124–135. Retrieved from https://doi.org/10.1016/J.SCITOTENV.2011.12.064
Pesaran, M. H., & Shin, Y. (1999). An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. In Econometrics and Economic Theory in the 20th Century (371–413). Retrieved from https://doi.org/10.1017/CCOL521633230.011
Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics, 16(3), 289–326. Retrieved from https://doi.org/10.1002/JAE.616
Pope, C. A., Burnett, R. T., Turner, M. C., Cohen, A., Krewski, D., Jerrett, M., Gapstur, S. M., & Thun, M. J. (2011). Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure-Response Relationships. Environmental Health Perspectives, 119(11), 1616–1621. Retrieved from https://doi.org/10.1289/EHP.1103639
Ramsey, J. B. (1969). Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. Journal of the Royal Statistical Society: Series B (Methodological), 31(2), 350–371. Retrieved from https://doi.org/10.1111/J.2517-6161.1969.TB00796.X
Sarkodie, S. A., Strezov, V., Jiang, Y., & Evans, T. (2019). Proximate Determinants Of Particulate Matter (PM2.5) Emission, Mortality and Life Expectancy in Europe, Central Asia, Australia, Canada and the US. Science of The Total Environment, 683, 489–497. Retrieved from https://doi.org/10.1016/J.SCITOTENV.2019.05.278
Shou, Y., Huang, Y., Zhu, X., Liu, C., Hu, Y., & Wang, H. (2019). A Review of the Possible Associations between Ambient PM2.5 Exposures and the Development of Alzheimer’s Disease. Ecotoxicology and Environmental Safety, 174, 344–352. Retrieved from https://doi.org/10.1016/J.ECOENV.2019.02.086
Thurston, G. D., Burnett, R. T., Turner, M. C., Shi, Y., Krewski, D., Lall, R., Ito, K., Jerrett, M., Gapstur, S. M., Ryan Diver, W., & Arden Pope, C. (2016). Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environmental Health Perspectives, 124(6), 785–794. Retrieved from https://doi.org/10.1289/EHP.1509777
Toda, H. Y., & Yamamoto, T. (1995). Statistical Inference in Vector Autoregressions with Possibly Integrated Processes. Journal of Econometrics, 66(1–2), 225–250. Retrieved from https://doi.org/10.1016/0304-4076(94)01616-8
WHO. (2022). Ambient (Outdoor) Air Pollution. Retrieved from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
Xu, W., Sun, J., Liu, Y., Xiao, Y., Tian, Y., Zhao, B., & Zhang, X. (2019). Spatiotemporal Variation and Socioeconomic Drivers of Air Pollution in China during 2005–2016. Journal of Environmental Management, 245, 66–75. Retrieved from https://doi.org/10.1016/J.JENVMAN.2019.05.041
Yang, L., Wu, Y., Davis, J. M., & Hao, J. (2011). Estimating the Effects of Meteorology on PM2.5 Reduction during the 2008 Summer Olympic Games in Beijing, China. Frontiers of Environmental Science and Engineering in China, 5(3), 331–341. Retrieved from https://doi.org/10.1007/S11783-011-0307-5/METRICS
Yang, Q., Yuan, Q., Li, T., Shen, H., & Zhang, L. (2017). The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. International Journal of Environmental Research and Public Health 2017, 14(12), 1510. Retrieved from https://doi.org/10.3390/IJERPH14121510
Zhang, H., Wang, Z., & Zhang, W. (2016). Exploring Spatiotemporal Patterns of PM2.5 in China Based on Ground-Level Observations for 190 Cities. Environmental Pollution, 216, 559–567. Retrieved from https://doi.org/10.1016/J.ENVPOL.2016.06.009
Zhang, Y., Shuai, C., Bian, J., Chen, X., Wu, Y., & Shen, L. (2019). Socioeconomic Factors of PM2.5 Concentrations in 152 Chinese Cities: Decomposition Analysis Using LMDI. Journal of Cleaner Production, 218, 96–107. Retrieved from https://doi.org/10.1016/J.JCLEPRO.2019.01.322
Zhao, H., Guo, S., & Zhao, H. (2018). Characterizing the Influences of Economic Development, Energy Consumption, Urbanization, Industrialization, and Vehicles Amount on PM2.5 Concentrations of China. Sustainability, 10(7), 2574. Retrieved from https://doi.org/10.3390/SU10072574
Zhou, C., Chen, J., & Wang, S. (2018). Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Using Spatial Regression and the Geographical Detector Technique. Science of The Total Environment, 619–620, 436–445. Retrieved from https://doi.org/10.1016/J.SCITOTENV.2017.11.124